期刊文献+

半监督极限学习机及其在近红外光谱数据分析中的应用 被引量:2

Semi-supervised extreme learning machine and its application in analysis of near-infrared spectroscopy data
下载PDF
导出
摘要 当数据集中包含的训练信息不充分时,监督的极限学习机较难应用,因此将半监督学习应用到极限学习机,提出一种半监督极限学习机分类模型;但其模型是非凸、非光滑的,很难直接求其全局最优解。为此利用组合优化方法,将提出的半监督极限学习机化为线性混合整数规划,可直接得到其全局最优解。进一步,利用近红外光谱技术,将半监督极限学习机应用于药品和杂交种子的近红外光谱数据的模式分类。与传统方法相比,在不同的光谱区域的数值实验结果显示:当数据集中包含训练信息不充分时,提出的半监督极限学习机提高了模型的推广能力,验证了所提出方法的可行性和有效性。 When insufficient training information is available, supervised Extreme Learning Machine( ELM) is difficult to use. Thus applying semi-supervised learning to ELM, a Semi-Supervised ELM( SSELM) framework was proposed.However, it is difficult to find the optimal solution of SSELM due to its nonconvexity and nonsmoothness. Using combinatorial optimization method, SSELM was solved by reformulating SSELM as a linear mixed integer program. Furthermore, SSELM was used for the direct recognition of medicine and seeds datasets using Near-Infra Red spectroscopy( NIR) technology. Compared with the traditional ELM methods, the experimental results show that SSELM can improve the generation when insufficient training information is available, which indicates the feasibility and effectiveness of the proposed method.
出处 《计算机应用》 CSCD 北大核心 2016年第2期387-391,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(11471010 11271367)~~
关键词 极限学习机 半监督学习 非凸最优化 混合整数规划 近红外光谱 Extreme Learning Machine(ELM) semi-supervised learning nonconvex optimization mixed integer programming Near-Infra Red spectroscopy(NIR)
  • 相关文献

参考文献16

  • 1CHAPELLE O, SINDHWANI V, KEERTHI S S. Optimization techniques for semi-supervised support vector machines[J]. Journal of Machine Learning Research, 2008, 9: 203-233.
  • 2BENNETT K P, DEMIRIZ A. Semi-supervised support vector machines[C]//Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems II. Cambridge, MA: MIT Press, 1998: 368-374.
  • 3YANG L M, WANG L S. A class of smooth semi-supervised SVM by difference of convex functions programming and algorithm[J]. Knowledge-based Systems, 2013, 41: 1-7.
  • 4TEMPO R, CALAFIORE G, DABBENE F. Statistical learning theory[M]//Randomized Algorithms for Analysis and Control of Uncertain Systems: with Applications. London: Springer-Verlag, 2013: 123-134.
  • 5YANG L M, WANG L S, GAO Y P, et al. A convex relaxation framework for a class of semi-supervised learning methods and its application in pattern recognition[J]. Engineering Applications of Artificial Intelligence, 2014, 35: 335-344.
  • 6HUANG G-B, ZHU Q-Y, SIEW C-K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501.
  • 7HUANG G-B, DING X, ZHOU H. Optimization method based extreme learning machine for classification[J]. Neurocomputing, 2010, 74(1/2/3): 155-163.
  • 8MATIAS T, SOUZA F, ARAúJO R, et al. Learning of a single-hidden layer feedforward neural network using an optimized extreme learning machine[J]. Neurocomputing, 2014, 129: 428-436.
  • 9CHOROWSKI J, WANG J, ZURADA J M. Review and performance comparison of SVM-and ELM-based classifiers[J]. Neurocomputing, 2014, 128: 507-516.
  • 10LIU J F, CHEN Y Q, LIU M J, et al. SELM: Semi-supervised ELM with application in sparse calibrated location estimation[J]. Neurocomputing, 2011, 74(16): 2566-2572.

二级参考文献23

  • 1罗一帆,郭振飞,朱振宇,王川丕,江和源,韩宝瑜.近红外光谱测定茶叶中茶多酚和茶多糖的人工神经网络模型研究[J].光谱学与光谱分析,2005,25(8):1230-1233. 被引量:78
  • 2罗文文,张月玲,龚淑英,顾志雷.绿茶水分和茶多酚总量近红外分析定标模型的建立与应用[J].茶叶,2007,33(2):67-70. 被引量:11
  • 3Chen Quansheng,Zhao Jiewen,Huang Xinyi et al..Simultaneous determination of total polyphenols and caffeine contents of green tea by near-infrared reflectance spectroscopy[J].Microchemical Journal,2006,83(1):42-47.
  • 4Chen Quansheng,Zhao Jiewen,Liu Muhua et al..Determination of total polyphenols content in green tea using FT-NIR spectroscopy and different PLS algorithms[J].J.Pharmaceutical and Biomedical Analysis,2008,46(3):568-573.
  • 5G.B.Huang,Q.Y.Zhu,C.K.Siew.Extreme learning machine:theory and applications[J].Neurocomputing,2006,70(1-3):489-501.
  • 6F.L.Chen,T.Y.Ou .Sales forecasting system based on gray extreme learing machine with Taguchi method in retail industry[J].Expert Systems with Applications,2011,38(3):1336-1445.
  • 7Y.Lan,Y.C.Soh,G.B.Huang.Two-stage extreme learning machine for regression[J].Neurocomputing,2010,73(16-18):3028-3038.
  • 8Y.B.Yuan,Y.G.Wang,F.L.Cao.Optimization approximation solution for regression problem based on extreme learning machine[J].Neurocomputing,2011,74(16):2475-2482.
  • 9Z.L.Sun,T.M.Choi,K.F.Au et al..Sales forecasting using extreme learning machine with applications in fashion retailing[J].Decision Support System,2008,46(1):411-419.
  • 10G.B.Huang,X.J.Ding,H.M.Zhou.Optimization method based extreme learning machine for classification[J].Neurocomputing,2010,74(1-3):155-163.

共引文献16

同被引文献17

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部