期刊文献+

基于位置编码索引树的个性化推荐算法 被引量:1

Personalized recommendation algorithm based on location bitcode tree
下载PDF
导出
摘要 针对协同过滤算法在海量数据环境个性化推荐应用中存在的低效率问题,结合MapReduce框架特点,设计了一种应用于个性化推荐的基于位置编码的索引树(LB-Tree),创新性地将索引结构应用于个性化推荐。利用聚类资源的差异性存储策略,提升MapReduce任务处理并行性;根据聚类数据分布特征,以质心为圆心对聚类中的数据对象进行同心圆分层,并对每层采用不同长度的二进制编码来表达,将所有数据对象的编码组织成索引树结构,缩短频繁推荐的数据查找路径,达到个性化推荐时利用索引结构快速确定搜索空间的目的。与基于项目的 Top-N推荐算法和基于最近邻的推荐算法(SBNM)相比,LB-Tree所需时间开销增长最慢,准确率最高,验证了方法的有效性和高效性。 Since collaborative filtering recommendation algorithm is inefficient in large data environment, a personalized recommendation algorithm based on location bitcode tree, called LB-Tree, was developed. Combined with the characteristics of the MapReduce framework, a novel approach which applyed the index structure in personalized recommendation processing was proposed. For efficient parallel computing in MapReduce, a novel storage strategy based on the differences between clusters was presented. According to the distribution, each cluster was partitioned into several layers by concentric circles with the same centroid, and each layer was expressed by binary bitcodes with different length. To make the frequently recommended data search path shorter and quickly determine the search space by using the index structure, an index tree was constructed by bitcodes of all the layers. Compared with the Top-N recommendation algorithm and Similarity-Based Neighborhood Method( SBNM), LB-Tree has the highest accuracy with the slowest time-increasing, which verifies the effectiveness and efficiency of LB-Tree.
出处 《计算机应用》 CSCD 北大核心 2016年第2期419-423,427,共6页 journal of Computer Applications
基金 湖北省自然科学基金重点资助项目(2015CFA067) 湖北省教育厅科研项目计划重点项目(D20151001) 武汉市科技攻关计划项目(2013012401010851)~~
关键词 海量数据 MAPREDUCE 个性化推荐 索引树 位置编码 big data MapReduce personalized recommendation index tree location bitcode
  • 相关文献

参考文献21

  • 1International Data Corporation. EMC digital universe study with research and analysis by IDC [EB/OL]. [2014-11-30]. http://www.emc.com/leadership/digital-universe/index.htm.
  • 2RESNICK P, VARIAN H R. Recommender systems[J]. Communications of the ACM, 1997, 40(3): 56-58.
  • 3BREESE J S, HECKERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[C]//UAI '98: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, 1998: 43-52.
  • 4DESHPANDE M, KARYPIS G. Item-based top-N recommendation algorithms[J]. ACM Transactions on Information Systems, 2004, 22(1):143-177.
  • 5LINDEN G, SMITH B, YORK J. Amazon.com recommendations: item-to-item collaborative filtering[J]. IEEE Internet Computing, 2003, 7(1):76-80.
  • 6LIU Z B, QU W Y, LI H T, et al. A hybrid collaborative filtering recommendation mechanism for P2P networks[J]. Future Generation Computer Systems, 2010, 26(8): 1409-1417.
  • 7陈克寒,韩盼盼,吴健.基于用户聚类的异构社交网络推荐算法[J].计算机学报,2013,36(2):349-359. 被引量:125
  • 8SHANG M-S, JIN C-H, ZHOU T, et al. Collaborative filtering based on multi-channel diffusion[J]. Physica A: Statistical Mechanics & Its Applications, 2009, 388(23): 4867-4871.
  • 9ZHANG Z K, YU L, FANG K, et al. Website-oriented recommendation based on heat spreading and tag-aware collaborative filtering[J]. Physica A: Statistical Mechanics & Its Applications, 2014, 399: 82-88.
  • 10KIM J K, CHO Y H. Using Web usage mining and SVD to improve e-commerce recommendation quality[C]//PRIMA 2003: Proceedings of the 6th Pacific Rim International Workshop on Multi-Agents, LNAI 2891. Berlin: Springer-Verlag, 2003: 86-97.

二级参考文献61

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 2Goldberg D,Nichols D,Oki B,Terry D.Using collaborative filtering to weave an information tapestry.Communications of the ACM,1992,35(12):61-70.
  • 3Resnick P,Iacovou N,Suchak M,Bergstorm P,Riedl J.GroupLens:An open architecture for collaborative filtering of netnews//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work.Chapel Hill,North Carolina,United States,1994:175-186.
  • 4Shardanand U,Maes P.Social information filtering:Algorithms for automating "word of mouth"//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:210-217.
  • 5Hill M,Stead L,Furnas G.Recommending and evaluating choices in a virtual community of use//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:194-201.
  • 6Sarwar B M,Karypis G,Konstan J A,Riedl J.Application of dimensionality reduction in recommender system-A case study//Proceedings of the ACM WebKDD Web Mining for E-Commerce Workshop.Boston,MA,United States,2000:82-90.
  • 7Massa P,Avesani P.Trust-aware collaborative filtering for recommender systems.Lecture Notes in Computer Science,2004,3290:492-508.
  • 8Vincent S-Z,Boi Faltings.Using hierarchical clustering for learning the ontologies used in recommendation systems//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:599-608.
  • 9Park S-T,Pennock D M.Applying collaborative filtering techniques to movie search for better ranking and browsing//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:550-559.
  • 10Tomoharu I,Kazumi S,Takeshi Y.Modeling user behavior in recommender systems based on maximum entropy//Proceedings of the 16th International Conference on World Wide Web.Banff,Alberta,Canada,2007:1281-1282.

共引文献367

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部