期刊文献+

基于光滑扩展有限元的平板裂纹参数不确定性反求 被引量:3

Uncertain Inversion of Crack Parameters for Plates Based on the SmXFEM
下载PDF
导出
摘要 裂纹位置和尺寸等是工程监测需掌握的非常重要的信息.光滑扩展有限元是近年来发展起来的一种模拟裂纹的有效方法,即使采用极度不规则单元仍可获得精确的模拟结果,无需单元"质量"要求.因此在单元自动划分方面具有突出的优势,这一特点也使得该方法适用于裂纹反求过程的实时调用和含裂纹仿真模型的网格自动划分.研究基于光滑扩展有限元的不确定反求方法,用于识别平面弹性板中直裂纹位置和尺寸参数,即采用光滑扩展有限元法进行拉伸工况的正问题分析,通过测量平板边缘的节点位移建立优化模型,调用遗传算法实现裂纹参数的反求.反求过程中将材料的弹性模量和Poisson(泊松)比作为区间不确定变量,采用一阶Taylor(泰勒)公式实现了平板裂纹参数的不确定性反求. The crack parameters of positions and sizes are very important information for engineering monitoring.The smoothed extended finite element method(SmXFEM) was an effective method developed for the simulation of crack problems in recent years.The SmXFEM works well without high demand on the element quality,and gives accurate simulation results even with extremely irregular elements.The great advantages of the SmXFEM make it very suitable for automatic mesh generation of crack models in the real time calculation of crack inversion.An approach of uncertain inversion based on the SmXFEM was proposed to indentify the positions and sizes of straight cracks in elastic plane plates.In this approach,the SmXFEM,used to solve the forward problem of the crack model under tension,was called repeatedly by the genetic algorithm.Then an optimization model was established through measurement of the displacements of selected key nodes at the edge of the plate.Finally,with the elastic modulus and Poisson's ratio as uncertain interval variables,the 1st-order Taylor formula was used for the identification of crack parameters in the plates.The results show the correctness and applicability of the present method.
出处 《应用数学和力学》 CSCD 北大核心 2016年第1期60-72,共13页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11272118)~~
关键词 不确定性反求 光滑扩展有限元 裂纹 遗传算法 优化模型 uncertain inversion SmXFEM crack genetic algorithm optimization model
  • 相关文献

参考文献21

  • 1Rabinovich D, Givoli D, Vigdergauz S. XFEM-based crack detection scheme using a geneticalgorithm[ J]. International Journal for Numerical Methods in Engineering, 2007, 71(9):1051-1080.
  • 2Rabinovich D,Givoli D, Vigdergauz S. Crack identification by ‘ arrival time,using XFEM anda genetic algorithm [ J ]. International Journal for Numerical Methods in Engineering, 2009,77(3) : 337-359.
  • 3Sukumar N, Huang Z Y, Prevost J H, Suo Z. Partition of unity enrichment for bimaterial inter-face cracks [J]. International Journal for Numerical Methods in Engineering, 2004, 59(8):1075-1102.
  • 4Ashari S E,Mohammadi S M. Delamination analysis of composites by new orthotropic bimate-rial extended finite element methodf J]. International Journal for Numerical Methods in En-gineering ,2011, 86( 13) : 1507-1543.
  • 5Moes N,Dolbow J,Belytschko T. A finite element method for crack growth without remesh-ing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1) : 131-150.
  • 6Fries T P, Belytschko T. The extended/generalized finite element method : an overview of themethod and its applications [ J ]. International Journal for Numerical Methods in Engineer-ing, 2010,84(3) : 253-304.
  • 7Chessa J,Belytschko T. An enriched finite element method for axisymmetric two-phase flowwith surface tension[ J]. Journal of Computational Physics, 2003, 58( 13) : 2041-2064.
  • 8Chopp D,Sukumar N. Fatigue crack propagation of multiple coplanar cracks with the coupledextended finite element/fast marching method[ J]. International Journal of Engineering Sci-ence, 2003,41(8) : 845-869.
  • 9Duddu R,Bordas S,Moran B, Chopp D. A combined extended finite element and level setmethod for biofilm growth [ J ] _ International Journal for Numerical Methods in Engineer-ing, 2008, 74(5) : 848-870.
  • 10Ji H,Chopp D, Dolbow J. A hybrid extended finite element/level set method for modelingphase transformations [ J ] . International Journal for Numerical Methods in Engineering,2002, 54(8) : 1209-1233.

同被引文献27

引证文献3

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部