期刊文献+

超音速飞行器机翼颤振的时滞反馈控制 被引量:9

Tim e-Delayed Feedback Control of Flutter for Supersonic Airfoils
下载PDF
导出
摘要 采用时滞反馈主动控制方法对超音速飞行器机翼颤振进行控制,以提高飞行器机翼系统的颤振临界速度.首先根据二元机翼的力学模型,制定时滞反馈控制策略并建立时滞反馈控制系统的数学模型;分别对无控、零时滞反馈控制和有时滞反馈控制系统进行稳定性分析,获得时滞反馈控制系统的颤振稳定性边界.利用MATLAB/SIMULINK进行时域数值模拟,验证理论稳定性分析结果的正确性.结果表明:通过调节时滞量,可有效提高飞行器机翼的颤振临界速度,且控制策略简单,效果较好. An active delayed feedback control technique was proposed to control the flutter of supersonic airfoils. It's intended to increase the critical flowvelocity. Firstly,the delayed feedback control strategy was designed to suppress the flutter of the 2D airfoil,in turn the delayed differential equations(DDEs)were formulated for the controlled system under consideration. Then,the stability of the uncontrolled system,the non-delay feedback controlled system and the time-delayed feedback controlled system were analytically determined,respectively,and the flutter stability boundary of the delayed feedback controlled system as a function of the time delay was predicted. Finally,numerical simulation in time domain with the MATLAB / SIMU LINK software was made to demonstrate the effectiveness of the present theoretical analysis results. The results showthat,the critical flowvelocity is significantly increased through regulation of the time delay magnitude,and the proposed delayed feedback control strategy for flutter control of supersonic airfoils is not only valid but also easily applicable to engineering structures.
出处 《应用数学和力学》 CSCD 北大核心 2016年第2期210-218,共9页 Applied Mathematics and Mechanics
关键词 超音速 颤振 时滞反馈控制 稳定区域 时域分析 supersonic flutter time-delayed feedback control stability region time-domain analysis
  • 相关文献

参考文献8

  • 1吴志强,张建伟.二元机翼极限环颤振复杂分岔[J].工程力学,2008,25(2):52-55. 被引量:7
  • 2Abbas L K,Chen Q,O’Donnell K,Valentine D, Marzocca P. Bifurcations and chaotic behav-ior of hypersonic lifting surfaces with freeplay including the stif&iess and damping nonlineari-ties [ C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materi-als Conference. Honolulu, Hawaii, 2007.
  • 3Ramesh M,Narayanan S. Controlling chaotic motions in a two-dimensional airfoil using timedelayed feedback[ J]. Journal of Sound and Vibration,2001, 239(5) : 1037-1049.
  • 4Marzocca P,Librescu L,Na S,Rubillo C,Chan Y G. Non-linear aeroelastic response andcontrol of supersonic flapped 2-D lifting surfaces [ C]//47th AIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics, and Materials Conference, Newport, Rhode Island, 2006.
  • 5Librescu L,Marzocca P,Silva W A. Aeroelasticity of 2~D lifting surfaces with time-delayedfeedback control[ J]. Journal of Fluids and Structures, 2005 , 20(2) : 197-215.
  • 6Librescu L,Marzocca P,Silva W A. Supersonic/hypersonic flutter and postflutter of geometri-cally imperfect circular cylindrical panels [ J ] . Journal of Spacecraft and Rockets,2002, 39(5): 802-812.
  • 7李斌,杨智春,谷迎松.带延迟反馈控制的二元机翼颤振稳定性分析[J].机械科学与技术,2007,26(1):49-52. 被引量:4
  • 8Zhao Y H. Stability of a two- dimensional airfoil with time-delayed feedback control [J] . Jour-nal of Fluids and Structures, 2009,25( 1) : 1-25.

二级参考文献15

  • 1杨翊仁,倪樵.结构非线性颤振分析的KBM法及实验对比[J].振动工程学报,1995,8(4):351-355. 被引量:3
  • 2Librescu L, Marzneca P. Advances in the linear/nonlinear control of aeroelastie structural systems[ J ]. Aeta Mechanica, 2005,178 (3-4) :147 - 186
  • 3Yu P, Yuan Y, Librescu L, Marzocca P. Single/double Hopf Bifurcation and Aeroelastic Instability of a 2-D Supersonic Lifting Surface with Time Delayed Feedback Control [ R ]. AIAA 2004-1752
  • 4Yuan Y, Yu P, Librescu L, Marzocca P. Aeroelasticity of timedelayed feedback control of two-dimensionsl supersonic lifting surfaces [ J ]. Journal of Guidance, Control and Dynamics, 2004,27 (5) :795-803
  • 5Librescu L, Marzocca P, Silva W A. Aeroelasticity of 2-D lifting surfaces with time-delayed feedback control[J]. Journal of Flu. ids and Structures, 2005,20:197 -215
  • 6Marzoeca P, Librescu L, Silva W A. Time.delay effects on linear/ nonlinear feedback control of simple aeroelastic systems[ J]. Journal of Guidance, Control and Dynamics, 2005,28 ( 1 ) :53 - 62
  • 7Kim S H, Lee I. Aeroelastic analysis of a flexible airfoil with a freeplay non-linearity [J]. Journal of Sound and Vibration, 1996, 193(4): 823-846.
  • 8Tran C T, Petot D. Semi-empirical model for dynamic stall of airfoils in view of application to the calculation of a helicopter in forward flight [J]. Vertica, 1981, 5(1): 35-53.
  • 9Holt Ashley, Crarabed Zartarian. Piston theory-A new aerodynamic tool for the aeroelasticity [J]. Journal of Aeronaut Science, 1956, 23 (12): 1109-1118.
  • 10Edwards W. MAVRIC flutter model transonic limit cycle oscillation test [R]. Virginia: NASA, 2001.

共引文献9

同被引文献76

引证文献9

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部