摘要
本文研究诣零半交换环上的Ore扩张环的性质.利用对多项式的逐项分析方法,我们证明了:设α是环R上的一个自同态,δ是环R上的一个α-导子.如果R是(α,δ)-斜Armendariz的(α,δ)-compatible环,则R[x;α,δ]是诣零半交换环当且仅当环R是诣零半交换环;如果R是诣零半交换的(α,δ)-compatible环,则R[x;α,δ]是斜Armendariz环.所得结果推广了近期关于斜多项式环的相关结论.
In this paper,we study the properties of Ore extensions of nil-semicommutative rings.Let α be an endomorphism and 5 an a-derivation of a ring R.By using the itemized analysis method on polynomials,we prove that if R is(α,δ)-skew Armendariz and(α,δ)-compatible,then R[x;α,δ]is nil-semicommutative if and only if R is nil-semicommutative;if R is nil-semicommutative and(α,δ)-compatible,then R[x;α,δ]is weak Armendariz,which generalize some related work on skew polynomial rings.
出处
《数学杂志》
CSCD
北大核心
2016年第1期17-29,共13页
Journal of Mathematics
基金
Supported by the National Natural Science Foundation of China(11101217)
the Natural Science Foundation of Jiangsu Province(BK20141476)