期刊文献+

诣零半交换环上的Ore扩张(英文) 被引量:1

ORE EXTENSIONS OF NIL-SEMICOMMUTATIVE RINGS
下载PDF
导出
摘要 本文研究诣零半交换环上的Ore扩张环的性质.利用对多项式的逐项分析方法,我们证明了:设α是环R上的一个自同态,δ是环R上的一个α-导子.如果R是(α,δ)-斜Armendariz的(α,δ)-compatible环,则R[x;α,δ]是诣零半交换环当且仅当环R是诣零半交换环;如果R是诣零半交换的(α,δ)-compatible环,则R[x;α,δ]是斜Armendariz环.所得结果推广了近期关于斜多项式环的相关结论. In this paper,we study the properties of Ore extensions of nil-semicommutative rings.Let α be an endomorphism and 5 an a-derivation of a ring R.By using the itemized analysis method on polynomials,we prove that if R is(α,δ)-skew Armendariz and(α,δ)-compatible,then R[x;α,δ]is nil-semicommutative if and only if R is nil-semicommutative;if R is nil-semicommutative and(α,δ)-compatible,then R[x;α,δ]is weak Armendariz,which generalize some related work on skew polynomial rings.
出处 《数学杂志》 CSCD 北大核心 2016年第1期17-29,共13页 Journal of Mathematics
基金 Supported by the National Natural Science Foundation of China(11101217) the Natural Science Foundation of Jiangsu Province(BK20141476)
关键词 诣零半交换环 ORE扩张 δ)-compatible环 弱(α δ)-compatible环 δ)-斜Armendari环 弱(α δ)-斜Armendari环 nil-semicommutative ring Ore extension (α δ)-compatible ring weak(α δ)compatible ring (α δ)-skew Armendariz ring weak(α δ)-skew Armendariz ring
  • 相关文献

参考文献1

二级参考文献24

  • 1Hong, C. Y., Kim, H. K., Kim, N. K., Kwak, T. K., Lee, Y. and Park, K. S., Rings whose nilpotent elements form a Levitzki radical, Comm. Algebra, 35(2007), 1379-1390.
  • 2Antoine, R., Nilpotent elements and Armendariz rings, J. Algebra, 319(2008), 3128-3140.
  • 3Kim, N. K, Lee, K. H. and Lee, Y., Power series rings satisfying a zero divisor property, Comm. Algebra, 34(2006), 2205-2218.
  • 4Marks, G., A taxonomy of 2-primal rings, J. Algebral 266(2003), 494-520.
  • 5Shin, G., Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc., 184(1973), 43-60.
  • 6Agaygv, N. and Harmanci, A., On semicommutative modules and rings, Kyungpook Math. J., 47(2007), 21-30.
  • 7Baser, M. and Agaygv, N., On reduced and semicommutative modules, Turkish J. Math., 30(2006), 285-291.
  • 8Baser, M., Harmanci, A. and Kwak, T. K., Generalized semicommutative rings and their extensions, Bull. Korean Math. Soc., 45(2008), 285-297.
  • 9Huh, C., Lee, Y. and Smoktunowicz, A., Armendariz rings and semicommutative rings, Comm. Algebra, 30(2002), 751-761.
  • 10Hwang, S. U., Jeon, Y. C. and Lee, Y., Structure and topological condition of NI-rings, J. Algebra, 302(2006), 186-199.

共引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部