期刊文献+

一类食饵-捕食生物模型的动态分歧

DYNAMIC BIFURCATION OF A CLASS OF PREDATOR-PREY BIOLOGICAL MODEL
下载PDF
导出
摘要 本文运用线性全连续场的谱理论及跃迁理论讨论了一类食饵-捕食生物模型的动态分歧,在一定条件下得到了跃迁类型的判据,并判断了跃迁的类型,同时也给出了分歧解的表达式,最后对获得的结果做了必要的解释. In this paper,we disscuss the dynamic bifurcation of a class of predator-prey biological model.By using the spectrum theory of the linear completely continuous fields and transition theory,the distinguished number of transition is judged under certain conditions.At the same time,the expression bifurcation solution is given and necessary justification is also made for the results obtained.
出处 《数学杂志》 CSCD 北大核心 2016年第1期105-111,共7页 Journal of Mathematics
基金 四川省教育厅青年基金资助(12ZB108)
关键词 食饵-捕食生物模型 中心流形定理 谱理论 跃迁 动态分歧 predator-prey biological model center manifold spectrum theory transition theory dynamic bifurcation
  • 相关文献

参考文献2

二级参考文献13

  • 1MA Tian,WANG Shouhong.DYNAMIC BIFURCATION OF NONLINEAR EVOLUTION EQUATIONS[J].Chinese Annals of Mathematics,Series B,2005,26(2):185-206. 被引量:16
  • 2钟吉玉.关于Kuramoto-Sivashinsky方程平衡解的分岔问题[J].四川大学学报(自然科学版),2006,43(2):277-280. 被引量:6
  • 3Chow, S. N. & Hale, J. K., Methods of Bifurcation Theory, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Science), Vol. 251, Springer-Verlag, New York,1982.
  • 4Constantin, P. & Foias, C., The Navier-Stokes Equations, University of Chicago Press, Chicago, 1988.
  • 5Henry, D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol.840, Springer-Verlag, Berlin, 1981.
  • 6Hirsch, M. W., Pugh, C. C. & Shub, M., Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583,Springer-Verlag, Berlin, 1977.
  • 7Hurewicz, W. & Wallman, H., Dimension Theory, Princeton Mathematical Series, Vol. 4, Princeton University Press, Princeton, N. J., 1941.
  • 8Ma, T. & Wang, S. H., Structural classification and stability of incompressible vector fields, Physica D, 171(2002), 107-126.
  • 9Ma, T. & Wang, S. H., Attractor bifurcation theory and its applications to Rayleigh-Benard convection,Communications on Pure and Applied Analysis, 2:3(2003), 591-599.
  • 10Ma, T. & Wang, S. H., Dynamic bifurcation and stability in the Rayleigh-Benard convection, Communication of Mathematical Sciences, 2:2(2004), 159-183.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部