摘要
本文研究了具有覆盖性质的弱次-ortho-紧空间的σ-积问题,证明存在可数仿紧空间族{X_α:α∈ω_1}满足:(1)空间σ{X_α:α∈ω_1}的每个有限子乘积是弱次-ortho-紧的;(2)空间σ{X_α:α∈ω_1}不是弱次-ortho-紧的.利用拓扑空间乘积性理论,获得了如下结果:设X=σ{X_α:α∈A}是|A|-仿紧空间.如果X的每个有限子乘积是弱次-ortho-紧的,则X也是弱次-ortho-紧的.从而推广了文献[8]的结果.
In this paper,we discuss the σ-products of weakly suborthocompact spaces characterized by covering.We present that there exists a collection of countably paracompact spaces {Xα:α∈ω1} such that:(1) Each finite subproduct of σ{Xα:α∈ω1} are weakly suborthocompact;(2) The space σ{Xα:α∈ω1} is not weakly suborthocompact.Finally,by using the products of topological spaces,we prove that if X=σ{Xα:α∈A} is a |A|-paracompact space with every finite subproduct of X being weakly suborthocompact,then X is weakly suborthocompact,which generalizes the result in[8].
出处
《数学杂志》
CSCD
北大核心
2016年第1期177-182,共6页
Journal of Mathematics
基金
国家自然科学基金项目(11026081)
四川省教育厅科研项目(14ZB0007)