期刊文献+

一类具有时滞的比率依赖捕食者一食饵模型的全局Hopf分支 被引量:1

GLOBAL HOPF BIFURCATION OF A RATIO-DEPENDENT PREDATOR-PREY MODEL WITH TIME DELAY
下载PDF
导出
摘要 本文研究了一类比率依赖的捕食者-食饵模型的Hopf分支问题,运用吴建宏等人利用等变拓扑度理论建立起的一般泛函微分方程的全局分支理论,得到了由系统的正平衡点分支出来的周期解的全局存在性,最后利用数值模拟验证了理论分析的正确性. This paper is concerned with a ratio-dependent predator-prey model with time delay.By using a global Hopf bifurcation result of general functional differential equations due to Wu Jianhong etc.,the global existence results of periodic solutions bifurcating from Hopf bifurcations are established.Finally,numerical simulations are also included to support the theoretic analysis.
作者 赵汇涛
出处 《数学杂志》 CSCD 北大核心 2016年第1期191-198,共8页 Journal of Mathematics
基金 河南省教育厅资助项目(13A110108) 河南省科技厅资助项目(122300410417)
关键词 比率依赖 捕食者-食饵模型 稳定性 全局HOPF分支 ratio-dependent predator-prey model stability global Hopf bifurcation
  • 相关文献

参考文献10

  • 1Arditi R, Ginzburg L R. Coupling in predator-prey dynamics: ratio-dependence[J]. J. Theo. Biology, 1989, 139(3): 311-326.
  • 2Xu R, Gan Q, Ma Z. Stability and bifurcation analysis on a ratio-dependent predator-prey model with time delay[J], J. Comput. Appl. Math., 2009, 230(1): 187-203.
  • 3Sun C, Han M. Global Hopf bifurcation analysis on a BAM neural network with delays[J]. Math. Comput. ModeL, 2007, 45(1-2): 61-67.
  • 4Meng X, Huo H, Zhang X. Stability and global Hopf bifurcation in a delayed food web consisting of a prey and two predators[J]. Commun. Nonl. Sci. Numer. Simul., 2011, 16(11): 4335-4348.
  • 5Kuang Y, Beretta E. Global qualitative analysis of ratio-dependent predator-prey system[J]. J. Math. Biology, 1998,36(4): 389-406.
  • 6Song Y, Wei J. Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system[J]. J. Math. Anal. Appl., 2005,301(1): 1-21.
  • 7Erbe L H, Krawcewicz W, Geba K, Wu Jianhong. S1-degree and global Hopf bifurcation throry of functional-differential equations[J]. J. Diff. Equ., 1992, 89(2): 277-298.
  • 8Wen X, Wang Z. The existence of periodic solutions for some models with delay[J]. Nonlinear Analysis: Real World Appl., 2002,3(4): 567-581.
  • 9Wu Jianhong. Symmetric functional differential equations and neural networks with memory[J]. Trans. American Math. Soc., 1998,350: 4799-4838.
  • 10Hale J, Lunel S. Introduction to functional differential equations[M]. New York: Spring-Verlag, 1993.

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部