期刊文献+

A Gauss-Bonnet-Chern theorem for complex Finsler manifolds

A Gauss-Bonnet-Chern theorem for complex Finsler manifolds
原文传递
导出
摘要 Using Chern's method of transgression and the currents, we establish a Gauss-Bonnet-Chern theorem for general closed complex Finsler manifolds(M, F). This result extends the classical Gauss-Bonnet-Chern theorem for Hermitian manifolds. Furthermore, a simplified version of the Gauss-Bonnet-Chern theorem is obtained in the case of complex Berwald 1-manifolds. Using Chern's method of transgression and the currents, we establish a Gauss-Bonnet-Chern theorem for general closed complex Finsler manifolds(M, F). This result extends the classical Gauss-Bonnet-Chern theorem for Hermitian manifolds. Furthermore, a simplified version of the Gauss-Bonnet-Chern theorem is obtained in the case of complex Berwald 1-manifolds.
作者 ZHAO Wei
出处 《Science China Mathematics》 SCIE CSCD 2016年第3期515-530,共16页 中国科学:数学(英文版)
基金 Tian Yuan Foundation of National Natural Science Foundation of China (Grant No. 11426108) the Fundamental Research Funds for the Central Universities
关键词 complex Finsler manifold the Gauss-Bonnet-Chern theorem transgression method 复Finsler流形 定理 高斯 帽子 Hermitian流形
  • 相关文献

参考文献24

  • 1Abate M, Patrizio G. Finsler metrics: A global approach. In: Lecture Notes in Mathematics, vol. 1591. Berlin- Heidelberg: Springer-Verlag, 1994.
  • 2Aikou T. On complex Finsler manifolds. Rep Fac Sci Kagoshima Univ, 1991, 24:9-25.
  • 3Aikou T. Finsler geometry on complex vector bundles: Riemann-Finsler geometry. Math Sci Res Inst Publ, 2004, 50: 83-105.
  • 4Bao D, Chern S S. A note on the Gauss-Bonnet theorem for Finsler spaces. Ann of Math, 1996, 143:233 252.
  • 5Bao D, Chern S S, Shen Z. On the Gauss-Bonnet integrand for 4~dimensional Landsberg spaces. Contemp Math, 1996, 196:15-25.
  • 6Bao D, Chern S S, Shen Z. An Introduction to Riemannian-Finsler Geometry. New York: Springer-Verlag, 2000.
  • 7Baum F. Vector fields and Gauss-Bonnet. Bull Amer Math Soc, 1970, 76:1202-1211.
  • 8Bott R. Vector fields and characteristic numbers. Michigan Math J, 1967, 14:231-244.
  • 9Bott R, Chern S S. Hermitian vector bundles and the equidistrlbution of the zeroes of their holomorphic sections. Acta Math, 1965, 114:71-112.
  • 10Chen B, Shen Y. On complex Randers metrics. Int J Math, 2010, 21:971-986.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部