期刊文献+

一种基于正交函数系的时间序列聚类方法 被引量:5

CLUSTERING TIME SERIES BASED ON ORTHOGONAL FUNCTION SYSTEM
原文传递
导出
摘要 基于正交函数系和FCM算法,提出了一种新的时间序列聚类的方法.该方法首先通过一个非线性映射,将长度为n的时间序列映射到L_2空间,然后通过计算函数之间的距离得到时间序列之间的相似度.在此基础上,经过FCM算法实现时间序列的聚类.该方法克服了时间序列的高维数特征为时间序列聚类带来的计算困难.实验结果表明,对高维的时间序列,该方法在压缩率达到80%的情况下,依然具有良好的聚类效果. Based on the orthogonal function system and FCM algorithm,this paper proposed a method to clustering time series.The time series with length n are first mapped in L_2 space.Then the similarity of series will be obtained by computing the distance among functions.Last,the cluster results of time series have been achieved by FCM algorithm according to these similarities.The advantage of the proposal is to greatly reduce the amount of calculation caused by clustering the high dimensional time series.The experimental results show that the desired cluster results can also be obtained under the case of 80% compressibility.
出处 《系统科学与数学》 CSCD 北大核心 2016年第1期53-60,共8页 Journal of Systems Science and Mathematical Sciences
关键词 时间序列 正交函数系 FCM算法 降维 聚类 Time series orthogonal function system FCM algorithm dimensionality reduction clustering
  • 相关文献

参考文献1

二级参考文献13

  • 1Wu KL,Yang MS.Alternative c-means clustering algorithms.Pattern Recognition,2002,35(10):2267-2278.[doi:10.1016/S0031-3203(01)00197-2].
  • 2Xing EP,Ng AY,Jordan MI,Russell S.Distance metric learning with application to clustering with side-information.In:Becker S,Thrun S,Obermayer K,eds.Advances in Neural Information Processing Systems 15.Cambridge:MIT Press,2002.505-512.
  • 3Bar-Hillel A,Hertz T,Shental N,Weinshall D.Learning a mahalanobis metric from equivalence constraints.Journal of Machine Learning Research,2005,6:937-965.
  • 4Bilenko M,Basu S,Mooney RJ.Integrating constraints and metric learning in semi-supervised clustering.In:Greiner R,Schuurmans D,eds.Proc.of the 21st Int'l Machine Learning Conf.New York:ACM Press,2004.81-88.
  • 5Ceccarelli M,Maratea A.Improving fuzzy clustering of biological data by metric learning with side information.Int'l Journal of Approximate Reasoning,2008,47(1):45-57.[doi:10.1016/j.ijar.2007.03.008].
  • 6Yang L,Jin R,Sukthankar R,Liu Y.An efficient algorithm for local distance metric learning.In:Proc.of the AAAI.Menlo Park:AAAI Press,2006.543-548.
  • 7Ye JP,Zhao Z,Liu H.Adaptive distance metric learning for clustering.In:Proc.of the CVPR.Washington:IEEE Computer Society Press,2007.1-7.
  • 8Wang XZ,Wang YD,Wang LJ.Improving fuzzy c-means clustering based on feature-weight learning.Pattern Recognition Letters,2004,25(10):1123-1132.[doi:10.1016/j.patrec.2004.03.008].
  • 9Atkinson K.An Introduction to Numerical Analysis.2nd ed.,New York:John Wiley & Sons,1989.
  • 10Hathaway RJ,Bezdek JC,Tucker WT.An improved convergence theorem for the fuzzy c-means clustering algorithms.In:Bezdek J,ed.Proc.of the Analysis of Fuzzy Information,Vol.3.Boca Raton:CRC Press,1987.123-131.

共引文献22

同被引文献28

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部