期刊文献+

数学规划的一种障碍目标罚函数算法(英文) 被引量:1

A BARRIER OBJECTIVE PENALTY FUNCTION ALGORITHM FOR MATHEMATICAL PROGRAMMING
原文传递
导出
摘要 研究了数学规划的一种障碍目标罚函数算法,首先,针对数学规划问题定义了一种障碍目标罚函数,针对凸规划问题,提出了一种求解近似最优解的算法,并证明了对应的收敛性,然后,针对一般数学规划问题又提出一个改进算法,并证明了对应的收敛性,最后,数值实验结果表明了提出的改进算法比传统的障碍函数算法有更好的收敛性. In this paper,we study an algorithm of a barrier objective penalty function for mathematical programming.We define the barrier objective penalty function for mathematical programming.Based on the barrier objective penalty function,we present an algorithm(called B Algorithm) for finding an approximately optimal solution to a convex mathematical programming and prove its convergence under some conditions.Then,we obtain an algorithm(called MB Algorithm) by modifying B Algorithm and its convergence without convex conditions.Finally,numerical examples show that MB Algorithm has much better convergence than classical barrier function algorithms.
出处 《系统科学与数学》 CSCD 北大核心 2016年第1期75-92,共18页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(11271329)资助课题
关键词 算法 数学规划 障碍目标罚函数 最优解 Algorithm mathematical programming barrier objective penalty function optimal solution
  • 相关文献

参考文献21

  • 1Lasdon L S, Fox R L, Ratner M W. An efficient one-dimensional search procedure for barrier functions. Mathematical Programming 1973, 4: 279-296.
  • 2Iri M, Imai H. A multiplicative barrier function method for linear programming. Algorithmica, 1986, 1: 455-482.
  • 3Pan V. The modified barrier function method for linear programming and its extensions. Com- puters Mathematics with Applications, 1990, 20(3): 1-14.
  • 4Hertog D, Roos C, Terlaky T. On the classical logarithmic barrier function method for a class of smooth convex programming problems. Journal of Optimization Theory and Applications, 1992, 73(1): 1 25.
  • 5Polyak R. Modified barrier functions (theory and methods). Mathematical Programming, 1992, 54: 177-222.
  • 6Wu S Q, Wu F. Rank-one techniques in log-barrier function methods for linear programming. Journal of Optimization Theory and Applications, 1994, 82(2): 405-413.
  • 7Margaret H W. Some properties of the Hessian of the logarithmic barrier function. Mathematical Programming, 1994, 67: 265-295.
  • 8Cheng Z Y, Mitchell J E. A primal-dual interior-point method for linear programming based on a weighted barrier function. Journal of Optimization Theory and Applications, 1995, 87(2): 301-321.
  • 9Tsao H S J, Fang S C. An unconstrained dual approach to solving Karmarkar-type linear programs using conventional barrier functions. Zeitschrift fiir Operations Research, 1995, 42: 325-343.
  • 10Pillo G D, Facchinei F. Exact barrier function methods for Lipschitz programs. Applied Mathe- matics Optimization, 1995, 32: 1-31.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部