期刊文献+

基于面部生命特征的3D假面欺骗攻击检测方法 被引量:3

Facial Vital Sign Based Countermeasure Against 3D Mask Attacks
下载PDF
导出
摘要 现有的人脸认证系统大都易于遭受欺骗攻击,传统的攻击方式主要包含影印照片和视频回放。随着3D打印技术的不断发展和成熟,使用3D面具进行欺骗攻击逐渐成为新的威胁。针对3D面具欺骗攻击提出了一种新的特征用于攻击检测。该特征基于人体心脏搏动会导致真实用户的面部血流量发生周期性变化这一生理现象,提取了面部皮肤颜色信号的频谱。在公开的3D面具欺骗攻击数据库上的试验表明,联合使用该生理特征和面部纹理特征的抗攻击方法相比于以往单独使用纹理特征的方法准确率得到了显著提升,可以更好地抵抗3D面具的欺骗攻击。 Vulnerability to spoofing attacks is the main drawback for current face authentication systems. Traditional spoofing attacks include displaying printed photos and replaying recorded videos. With the development of 3D printing technology, the 3D mask spoofing attack has been becoming the new threat. A novel anti-spoofing feature was proposed to 3D mask attacks. A liveness feature from the power spectrum of facial color signal was extracted based on a physiological phenomenon that the color of real human face changed periodically due to the blood circulation. The performance of countermeasure jointly using the liveness feature and facial texture feature was evaluated on a public database named 3D Mask Attack Database(3DMAD) and achieved a higher accuracy comparing to previous methods that only considered texture features.
出处 《系统仿真学报》 CAS CSCD 北大核心 2016年第2期361-368,共8页 Journal of System Simulation
基金 国家自然科学基金项目(61205017 61502293 61573144) 中央高校基本科研业务费专项资金项目
关键词 人脸认证 欺骗攻击 3D打印面具 面部生命特征 face authentication spoofing attacks 3D mask facial vital signs
  • 相关文献

参考文献16

  • 1I Chingovska,A Anjos,S Marcel.On the effectiveness of local binary patterns in face anti-spoofing[C]// IEEE Biometrics Special Interest Group(BIOSIG),2012.USA:IEEE,2012.
  • 2J Maatta,A Hadid,M Pietika.Face spoofing detection from single images using texture and local shape analysis [J].IET Biometrics(S2047-4938),2012,1(1):3-10.
  • 3M Marsico,M Nappi,M Riccio,et al.Moving face spoofing detection via 3d projective invariants[C]//5th IAPR Intemational Conference on Biometrics(ICB),2012.USA:IEEE,2012.
  • 4G Pan,Z Wu,L Sun.Liveness detection for face recognition[Z]// Recent Advances in Face Recognition.Croatia:INTECH Open Access Publisher,2008:109-124.
  • 5S Bharadwaj,T I Dhamecha,M Vatsa,et al.Computationally Efficient Face Spoofing Detection with Motion Magnification[C]// IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).USA:IEEE,2013:105-110.
  • 6N Erdogmus,S Marcel.Spoofing in 2D face recognition with 3D masks and anti-spoofmg with Kinect[C]// Proceedings of IEEE Intemational Conference on Biometrics:Theory,Applications and Systems,2013.USA:IEEE,2013.
  • 7Z Zhang,D Yi,Z Lei,et al.Face liveness detection by learning multi-spectral reflectance distributions[C]// IEEE Intemational Conference on Automatic Face Gesture Recognition and Workshops,2011.USA:IEEE,2011:436-441.
  • 8N Kose,J L Dugelay.Countermeasure for the protection of face recognition systems against mask attacks[C]// IEEE Automatic Face and Gesture Recognition,2013.USA:IEEE,2013.
  • 9N Kose,J L Dugelay.Shape and Texture Based Countermeasure to Protect Face Recognition Systems Against Mask Attacks[C]// IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),2013.USA:IEEE,2013:111-116.
  • 10M Z Poh,D J McDufFj R W Picard.Non-contact,automated cardiac pulse measurements using video imaging and blind source separation[J].Optics Express (S1094-4087),2010,18(10):10762-10774.

同被引文献15

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部