期刊文献+

大数据时代的大学生学习及质量提升策略 被引量:18

The College Students' Learning Quality and Promotion Strategy in the Era of Big Data
下载PDF
导出
摘要 大数据不仅是一场技术革命,而且是一场思维与范式的革命。高校教学质量的本质是大学生的学习质量。在大数据时代,应建立以学习者为中心,以大学生学习质量为核心的教学质量新范式。基于大学生的学习行为数据,创设学习目标规划与激励、学习质量监控与预警、学习质量问题分析与扶助三位一体的学习质量支持系统,实现基于大数据分析的循环反馈教学改革,为大学生学习提供"立体式"支持,为实现大数据时代的精细化教学管理提供一种借鉴和参考。 Big data is not only a technology revolution, but a revolution of thinking and paradigm. In the essence, students' learning quality is the college teaching quality. In the era of big data, create a new paradigm of the learners should be considered as the center, and students' learning quality as the core. Based on students' learning behavior data,creating the learning quality support system,including learning objective planning and motivation,learning quality monitoring and early warning, quality problem analysis and help, to implement teaching reform, which based on analysis of large data feedback, to provide support for college students to learn, to provide a reference for achieving delicacy toaching management in the era of the big data.
机构地区 成都理工大学
出处 《现代教育管理》 CSSCI 北大核心 2016年第2期62-65,共4页 Modern Education Management
基金 四川省2013-2016年高等教育人才培养质量和教学改革项目"信息潮涌对大学生学习的影响与调控研究"(15Z008) 中国高等教育学会"十二五"规划课题"基于学生发展视角的高校本科教学质量调查与改进研究"(11YB035)
关键词 大数据 学习行为 学习质量 教学改革 big data learning behavior learning quality teaching reform
  • 相关文献

参考文献5

二级参考文献25

  • 1Arbaugh, J. B. (2002). Managing the on-line classroom : a study of technological and behavioral characteristics of web-based MBA courses [ J ]. Journal of High Technology Management Research, 13:203-223.
  • 2Aragon, S. R. , & Johnson, E. S. ( 2008 ). Factors influencing completion and noncompletion of community college online courses [ J ]. American Journal of Distance Education ,22 : 146-458.
  • 3Bergendahl, C. , & Tibell, L. (2005). Boosting complex learning by strategic assessment and course design [ J ]. Journal of Chemical Educa-tion, 82 : 645 -651.
  • 4Chen, C. - M. , & Chert, M. - C. ( 2009 ). Mobile formative as- sessment tool based on data mining techniques for supporting web-based learning [ J ]. Computers & Education, 52 : 256-273.
  • 5Chau, P. Y. K. , & Hu, P. J. - H. ( 2001 ). Information technolo- gy acceptance by individual professionals:A model comparison approach [ J]. Decision Sciences,32:699-719.
  • 6Graeme, M. , Massey, J. , & Clarke, T. (2003), When absorptive capacity meets institutions and (e)learners:adopting, diffusing and exploi- ting e-learning in organisations[ J ]. International Journal of Training and Development ,g : 228 -44.
  • 7Gold ,J. , Rodgers, H. and Smith, V. (2003), What is the fu- ture of the human resource development professional? AUK perspective [ J]. Human Resource Development International ,4:437-56.
  • 8Horton, R., Buck,T., Waterson, P., & Clegg, C. ( 2001 ). Ex- plaining intranet use with the technology acceptance model[ J]. Journal of Information Technology, 16:237-249.
  • 9Lee, Y. - H. , Hsieh, Y. - C. , & Hsu, C. - N. ( 2011 ). Adding Innovation Diffusion Theory to the Technology Acceptance Model: Sup- porting Employees" Intentions to use E-Learning Systems [ J ]. Educational Technology & Society,14 (4) :124-137.
  • 10Moisey, S. D. , & Hughes, J. A. ( 2008 ). Supporting the online learner[A]. In T. Anderson (Ed.). The theory and practice of online learning ( pp. 419-439 ; 2nd ed. ) [ M ]. Edmonton, Canada : AU Press.

共引文献56

同被引文献105

引证文献18

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部