期刊文献+

用户行为分析分类模型的研究

Research on user behavior analysis and classification model
下载PDF
导出
摘要 针对网络运营商所关心的用户行为分析问题,探讨如何对网络用户的行为进行分析,提出了一种用户行为分析分类的模型。首先根据关键字的关联性进行聚类分析,通过关键字被用户检索或浏览的次数对用户进行分类,然后在此基础上提出了加速算法和半衰期的概念,全面地阐述和分析了用户行为分析的总体框架。 In this paper, the problems of user behavior analysis of network operators and how to analyze the behavior of network users are discussed, and a model of user behavior analysis and classification is put forward. The cluster analysis is performed according to the correlation of the key words, users are classified by the number of the keyword searched or browsed by the user,and then the concepts of acceleration algorithm and half-life are put forward to comprehensively expound and analyze the general framework of user behavior analysis.
作者 赵丙秀
出处 《计算机时代》 2016年第2期46-48,共3页 Computer Era
关键词 用户行为分析 聚类算法 关联性 加速算法 user behavior analysis clustering algorithm correlation acceleration algorithm
  • 相关文献

参考文献3

二级参考文献13

  • 1马力,焦李成,董富强.一种Internet的网络用户行为分析方法的研究[J].微电子学与计算机,2005,22(7):124-126. 被引量:22
  • 2李君,王攀,孙雁飞,王浩云.P2P业务流量识别、分析和控制研究[J].计算机工程,2006,32(11):122-124. 被引量:37
  • 3互联网实验室.中国城市居民互联网使用及消费行为研究系列报告[R/OL].2003-01.http://www.chinalatxs.com/cache/03/05/15/88.shtml.
  • 4Stun S, Spatscheck O, Wang D M.Accurate, Scalable In-Network Identification of P2P Traffic Using Application Sig-natures [C] // WWW2004. New York, USA:[s. n. ] ,2004:121 - 128.
  • 5Roughan M, Sen S, Spatscheck O, et al. Class- of-service mapping for qos: a statistical signature - based approach-to ip traffic chssification [ C]//In IMC'04: Proceedings of,the 4th ACM SIGCOMM conference on Internet measurement. New York, NY, USA:ACM Press,2004.
  • 6Barford P, Plonka D. Characteristics of Network Traffic Flow Anomalies[ C ] //In: Proceedings of ACMSIGCOMM Intemet Meastmement Workshop (IMW) 2001. USA: [ s. n. ], 2001: 113 - 118.
  • 7田春岐,邹仕洪,田慧蓉,王文东,程时端.一种基于信誉和风险评价的分布式P2P信任模型[J].电子与信息学报,2007,29(7):1628-1632. 被引量:47
  • 8http://www. chinalabs. com/cache/doc/03/05/15/88.shtml.
  • 9Cyrus Shahabi, Farnoush Banaei-Kashani. A Framework for Efficient and Anonymous Web Usage Mining Based on Client -Side Tracking, WEBKDD-Mining Web Log Data Across All Customers Touch Points. 2001, 3:113-143.
  • 10Denning D. An Intrusion Detection Model. IEEE Trans. Software Engineering, Feb 1987.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部