期刊文献+

归纳式迁移学习在跨领域情感倾向性分析中的应用 被引量:2

Application of inductive transfer learning in cross-domain sentiment analysis
下载PDF
导出
摘要 在解决情感倾向性分析问题中,传统的监督学习和半监督学习都是在训练和测试所用的数据来自相同分布的假设基础之上的,但在很多情况下不能满足这样的假设,这就产生了跨领域的情感倾向性分析问题.在跨领域情感倾向性分析中,提出一种基于归纳式迁移学习的图模型,通过图模型建立源领域和目标领域数据之间的关联,使得源领域的数据通过图模型学习目标领域数据在特征和实例上的特点.同时,利用归纳式迁移学习方法使用少量的目标领域的已标注数据进行训练,从而提高了情感分类器在目标领域的分类准确率,极大地改进了跨领域情感倾向性分析的效果.在标准数据集上进行了实验,并与监督学习方法 SVM、半监督学习方向TSVM以及其它3种常用的迁移学习方法进行了对比,对比结果显示本文方法显著的高于SVM和TSVM,并在大多数数据集上优于其它3种迁移学习方法,实验结果表明该方法是有效的. To solve the sentiment analysis problems,traditional supervised learning methods and semi-supervised learning methods are based on the assumption that the training data and the testing data come from the identical distribution.It generates the cross-domain sentiment analysis problems when the assumption was not satisfied in some cases.In this paper,aiming at the problems of cross-domain sentiment analysis,agraph model is proposed based on the inductive transfer learning.The relevance of the source domain and the target domain data was built,such that the source domain data could learn the characteristic at the point of the feature and the instance of the target domain data by the graph model.Simultaneously,the accuracy of sentiment classifiers in the target domain could be improved by using few target domain labeled data by the inductive transfer learning method.The result of cross-domin sentiment analysis could be significantly improved.Experiments were carried out on the standard data,and were compared with supervised learning approach SVM,semi-supervised learing approach TSVM,as well as other three state-of-the-art transfer learning approaches.The results show that the proposed approach is superior to SVM and TSVM significantly,and is superior to other three state-of-the-art transfer learing approaches at almost every detaset.The results show the efficiency of the proposed approach.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第1期175-183,共9页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(61202254) 中央高校自主科研基金(DC201502030202 DC201502030405)
关键词 归纳式学习 跨领域情感倾向性分析 迁移学习 图模型 inductive learning cross-domain sentiment analysis transfer learning graph model
  • 相关文献

参考文献24

  • 1Pang B, Lee L, Shivakumar V. Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Philadelphia, PA, USA, Proceeding of the ACL,2002,79--86.
  • 2Rao D,Ravichandran 13. Semi supervised polarity lexicon induction. In: Proceedings of 12'h Conference of the European Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, 2009, 675--682.
  • 3徐琳宏,林鸿飞,潘宇,任惠,陈建美.情感词汇本体的构造[J].情报学报,2008,27(2):180-185. 被引量:389
  • 4赵妍妍,秦兵,车万翔,刘挺.基于句法路径的情感评价单元识别[J].软件学报,2011,22(5):887-898. 被引量:58
  • 5王素格,李德玉,魏英杰.基于赋权粗糙隶属度的文本情感分类方法[J].计算机研究与发展,2011,48(5):855-861. 被引量:19
  • 6姚天昉,程希文,徐飞玉,汉思·乌思克尔特,王睿.文本意见挖掘综述[J].中文信息学报,2008,22(3):71-80. 被引量:106
  • 7俞亚君,霍静,史颖欢,高阳,张剡.SSXCS:半监督学习分类系统[J].南京大学学报(自然科学版),2013,49(5):611-618. 被引量:7
  • 8Pan S, Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engi- neering, 2009, (22) : 1345-- 1359.
  • 9Cao X B, Wang Z, Yan P K, et al. Transfer learning for pedestrian detection. Neurocom- puting, 2013,100 : 51 -- 57.
  • 10Zhuo H H,Yang Q. Action-model acquisition for planning via transfer learning. Artificial Intelligence, 2014,212 : 80 -- 103.

二级参考文献133

共引文献601

同被引文献10

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部