期刊文献+

用三维荧光和红外技术分析好氧颗粒污泥形成初期胞外聚合物的变化 被引量:23

Analysis of extracellular polymeric substances changes during the initial stage of aerobic granulation by 3D-EEM and FTIR
下载PDF
导出
摘要 为了研究聚合氯化铝(PAC)的投加在好氧颗粒污泥培养初期的作用,本研究分别在污泥培养的第1—7天(R1)和第8—14天(R2)投加PAC,并采用三维荧光光谱(3D-EEM)和傅立叶红外光谱(FTIR)技术分析好氧颗粒污泥形成初期胞外聚合物(EPS)各组分的含量及变化规律.结果表明,PAC投加时间推迟后,污泥沉降性能良好,且反应器中胞外聚合物和蛋白质含量明显增多,松散附着的EPS(LB-EPS)中蛋白含量变化趋势明显,多糖含量保持在较小范围内波动,与溶解性胞外聚合物(S-EPS)和紧密黏附的胞外聚合物(TB-EPS)相比较,LB-EPS和污泥颗粒化有密切关系;三维荧光光谱分析结果显示,R2中荧光类蛋白物质(峰A和峰B)强度均大于R1,而腐殖酸类物质(峰C)强度小于R1,说明A和B这两种荧光类蛋白物质在微生物聚集体形成过程中的作用更加重要;红外光谱表明,1636 cm-1、1654 cm-1分别属于蛋白质二级结构中C=O伸长振动引起的,分别存在于S-EPS和LB-EPS、TB-EPS中,且在投加PAC的时间推迟后1654 cm-1处的吸收峰吸收较弱,和三维荧光分析共同表明LB-EPS中的蛋白类物质是好氧颗粒污泥形成初期加入PAC进行强化造粒的核心原因之一. In order to investigate the effect of PAC during the initial stage of aerobic granulation,two dosing periods of PAC were chosen in this study( day 1—7,R1; day 8—14,R2). In addition,the content of EPS components was quantified and their variation was analyzed by using threedimensional fluorescence spectrum( 3D-EEM) and Fourier transform infrared spectroscopy( FTIR).The results showed that the granules formed in R2 performed better in settling properties and EPS production than that in R1. Moreover,more proteis were also observed. The contents of proteins in Loosely Bound EPS( LB-EPS) changed significantly,while the contents of polysaccharide fluctuated a narrow range. Compared with the Soluble EPS( S-EPS) and Tightly Bound EPS( TB-EPS),the LB-EPS was closely related to the sludge granulation. According to the 3D-EEM,compared with R1,the fluorescence intensity of peak A and B was stronger in R2,while the intensity of peak C was weaker. This result indicated that protein-like substances played a more important role on the formation of aggregations. The result of FTIR reveal C=O stretching vibration peak,which is associated with protein secondary structure, was observed in S-EPS, LB-EPS and TB-EPS.Furthermore,its intensity was higher in R1 than in R2,suggesting that the proteins in LB-EPS played a significant role during the initial period of aerobic granulation. This result was in accordance with the analysis of 3D-EEM.
出处 《环境化学》 CAS CSCD 北大核心 2016年第1期125-132,共8页 Environmental Chemistry
基金 国家自然科学基金(51178377)资助~~
关键词 好氧颗粒污泥 胞外聚合物 三维荧光光谱 红外光谱. aerobic granular sludge extracellular polymeric substances three-dimensional fluorescence spectrum fourier transform infrared spectroscopy
  • 相关文献

参考文献14

  • 1DI IACONI C, RAMADORI R, LOPEZ A, et al. Hydraulic shear stress calculation in a sequencing batch biofilm reactor with granularbiomass [J]. Envioronmental Science & Technology, 2005, 39(3): 889-894.
  • 2XIAO F, YANG S F, LI X Y. Physical and hydrodynamic properties of aerobic granules produced in sequencing batch reactors [J]. Separation and Purification Technology, 2008, 63(3): 634-641.
  • 3陈冉妮,高景峰,郭建秋,苏凯,张倩.好氧颗粒污泥同步脱氮除磷的常温启动和低温维持[J].环境科学,2009,30(10):2995-3001. 被引量:8
  • 4ADAV S S, LEE D J, TAY J H. Extracellular polymeric substances and structural stability of aerobic granule[J]. Water Research, 2008, 42 (6-7): 1644-1650.
  • 5LI X M, LIU Q Q, YANG Q, et al. Enhanced aerobic sludge granulation in sequencing batch reactor by Mg2+ augmentation[J]. Bioresource Technology, 2009, 100(1): 64-67.
  • 6ZHU L, LV M L, DAI X, et al. Role and significance of extracellular polymeric substances on the property of aerobic granule[J]. Bioresource Technology, 2001, 107(1): 46-54.
  • 7MCSWAIN B S, IRVINE R L, HAUSNER M, et al. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge[J]. Applied And Environmental Microbiology, 2005, 71 (2): 1051-1057.
  • 8ADAV S S, LEE D J, LAI J Y. Proteolytic activity in stored aerobic granular sludge structural integrity[J]. Bioresource Technology, 2009, 100 (1): 68-73.
  • 9LI H S, WEN Y, CAO A S, et al. The influence of additives (Ca2+, Al3+, and Fe3+) on the interaction energy and loosely bound extracellular polymeric substances (EPS) of activated sludge and their flocculation mechanisms[J]. Bioresource Technology, 2012, 114: 188-194.
  • 10MURTHY S N, NOVAK J T. Effects of potassium ion on sludge settling, dewatering and effluent properities[J]. Water Science and Technology, 1998, 37 (4-5): 317-324.

二级参考文献21

  • 1杨国靖,李小明,曾光明,谢珊,杨麒.好氧颗粒污泥实现同步除磷脱氮的试验研究[J].湖南大学学报(自然科学版),2005,32(3):97-100. 被引量:3
  • 2王景峰,王暄,季民,卢姗,杨造燕.A/OSBR中同步硝化反硝化除磷颗粒污泥的富集[J].中国给水排水,2006,22(17):100-104. 被引量:9
  • 3Tchobanoglous G, Burton F L, Stensel H D. Wastewater engineering: Treatment and reuse[ M]. (4th Edition). New York: Metcalf & Eddy-McGraw-Hill, 2003. 810-815.
  • 4De Kreuk M K, Heijnen J J, van Loosdreeht M C M. Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge [J]. Biotechnol Bioeng, 2005, 90(6) : 761-769.
  • 5Meyer R L, Zeng R J, Giugliano V, et al. Challenges for simultaneous nitrification, denitrification, and phosphorus removal in microbial aggregates: mass transfer limitation and nitrous oxide production[J]. FEMS Microbiol Ecol, 2005, 52(3) : 329-338.
  • 6Kishida N, Kim J, Tsuneda S, et al. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms [ J]. Water Res, 2006, 40(12) : 2303-2310.
  • 7Yilmaz G, Lemaire R, Keller J, et al. Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge[J]. Biotechnol Bioeng, 2008, 100 (3) : 529-540.
  • 8Morgan-Sagastume F, Allen D G. Effects of temperature transient conditions on aerobic biological treatment of wastewater [ J ]. Water Res, 2003, 37(15): 3590-3601.
  • 9Nam H U, Lee J H, Kim C W. Enhanced biological nutrients removal using the combined fixed-film reactor with bypass flow[ J]. Water Res, 2003, 34(5) : 1570-1576.
  • 10Giuseppe P, Canziani R, Pedrazzi L, et al. Phosphorus and nitrogen removal in moving bed sequencing batch biofilm reactors [ J ]. Water Sei Tcehnol, 1999, 41(4-5): 169-176.

共引文献7

同被引文献213

引证文献23

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部