The Multivariate Saddlepoint Approximation to the Distribution of Estimators: A General Approach
The Multivariate Saddlepoint Approximation to the Distribution of Estimators: A General Approach
摘要
We develop the theory of multivariate saddlepoint approximations. Our treatment differs from the one in Barndorff-Nielsen and Cox (1979, equation (4.7)) in two aspects: 1) our results are satisfied for random vectors that are not necessarily sums of independent and identically distributed random vectors, and 2) we consider that the sample is taken from any distribution, not necessarily a member of the exponential family of densities. We also show the relationship with the corresponding multivariate Edgeworth approximations whose general treatment was developed by Durbin in 1980, emphasizing that the basic assumptions that support the validity of both approaches are essentially similar.
参考文献24
-
1Abril, J. C. (1984). Un estudio de las aproximaciones a las densidades con 6nfasis en las expansiones de Edgeworth. Estadistica - Journal of the Inter-American Statistical Institute, 36, 109-24.
-
2Abril, J.C. (1985). Asymptotic expansions for time series problems with applications to moving average models. Ph.D. Thesis, The London School of Economics and Political Science, University of London, England.
-
3Abril, J.C. (1987). The approximate densities of some quadratic forms of stationary random variables. Journal of Time Series Analysis. 8, 249-59.
-
4Abril, J.C. (2004). Modelos para el An61isis de las Series de Tiempo. Ediciones Cooperativas, Buenos Aires.
-
5Abril, J. C., Abril, M. de las M. and Martinez, C. I. (2007). Aproximaciones a la distribuci6n del estimador del coeficiente en modelos AR(1) no estacionarios. Estadistica - Journal of the Inter-American Statistical Institute, 59, 87-102.
-
6Abril, J. C., Abril, M. de las M. and Martinez, C. I. (2008). La aproximaci6n de punto de ensilladura a la distribuci6n del coeficiente de correlaci6n serial en el caso de raiz unitaria. Actas del VII1 CLATSE (Congreso Latinoamericano de Sociedades de Estadistica) , Montevideo, Uruguay.
-
7Abril, J. C., Abril, M. de las M. and Martinez, C. I. (2008). Edgeworth approximation to the distribution of the autocorrelation coefficient in the presence of unit roots. Pakistan Journal of Statistics, 24 (3), 193-206.
-
8Abril, J.C. and Santillan, M.R. (1998). Approximation to the finite sample distribution of a general estimator of the coefficient in a AR(1) model. Pakistan Journal of Statistics, 14 (1), i 1-23.
-
9Barndorff-Nielsen, O and Cox, D. R. (1979). Edgeworth and saddlepoint approximations with statistical applications (with discussion). J. R. Statist. Soc. B, 41, 279-312.
-
10Bhattacharya, R.N. and Rao, R.R. (1976). Normal approximations and asymptotic expansions. John Wiley and Sons.
-
1Li Guangshun,Zhou Xiaohong,Zhang Yuhu,Zhou Houbing,Ding Bing,Wang Haixia,M. Oshima,Y. Toh,M. Koizumi,A. Osa,Y. Hatsukawa,M. Sugawara.Strucure of Negative Parity Band in 185pt[J].近代物理研究所和兰州重离子加速器实验室年报:英文版,2009(1):45-45.
-
2解银丽,杨新芳,贾利群.Noether Symmetry and Noether Conserved Quantity of Nielsen Equation for Dynamical Systems of Relative Motion[J].Communications in Theoretical Physics,2011,55(1):111-114. 被引量:1
-
3赵学志.不动点集的实现[J].辽宁大学学报(自然科学版),1995,22(A00):32-37.
-
4李广顺,周小红,张玉虎,周厚兵,滑伟,王世陶,丁兵,王海霞,Oshima M,Toh Y,Koizumi M,Osa A,Hatsukawa Y,Sugawara M.Properties of the ν7/2^-[503](f_(7/2)) band in ^(185)Pt[J].Chinese Physics C,2011,35(5):441-444.
-
5许蔚,姚学锋,金观昌.功能梯度材料II型动态裂纹尖端的焦散线分析[J].工程力学,2006,23(9):30-35. 被引量:6
-
6Daciberg GONALVES,Peter WONG,Xue Zhi ZHAO.Nielsen Theory on 3-manifolds Covered by S^2× R[J].Acta Mathematica Sinica,English Series,2015,31(4):615-636.
-
7田玉斌,张英,李国英.Logistic响应分布分位数的鞍点近似置信区间[J].数学物理学报(A辑),2005,25(1):110-118.
-
8陈芳祁,周先荣,顾建中.Level Statistics for the Nilsson Single-Particle Levels[J].Chinese Physics Letters,2010,27(3):52-55.
-
9QIN YiPing.Exact solutions to the Klein-Gordon equation in the vicinity of Schwarzschild black holes[J].Science China(Physics,Mechanics & Astronomy),2012,55(3):381-384. 被引量:1
-
10TIANYubin,LIGuoying,YANGJie.CONFIDENCE LOWER LIMITS FOR RESPONSE PROBABILITIES UNDER THE LOGISTIC RESPONSE MODEL[J].Journal of Systems Science & Complexity,2004,17(2):289-296.