期刊文献+

An Analytic Method for Interval Bimatrix Games

An Analytic Method for Interval Bimatrix Games
下载PDF
导出
摘要 This paper deals with rnxn two-person non-zero sum games with interval pay-offs. An analytic method for solving such games is given. A pair of Nash Equilibrium is found by using the method. The analytic method is effective to find at least one Nash Equilibrium (N.E) for two-person bimatrix games. Therefore, the analytic method for two-person bimatrix games is adapted to interval bimatrix games.
出处 《Journal of Mathematics and System Science》 2016年第2期66-71,共6页 数学和系统科学(英文版)
关键词 Bimatrix game Nash equilibrium interval payoff interval matrix 矩阵对策 区间 纳什均衡 解析方法 游戏 非零 求解
  • 相关文献

参考文献11

  • 1C. Lemke and J. Howson Jr., Equilibrium points of bimatrix games, Journal of the Society for Industrial and Applied Mathematics vol.12, no.2, (1964) 413-423.
  • 2J. Nash, Non-Cooperative Games, Annals of Mathematics, Vol.54, No.2, 1951.
  • 3Owen G., Game Theory Third Edition Academic Press (1995). R.E.Moore, Methods and Applications of Interval Analysis, SIAM, Philadelphia, USA, 1979.
  • 4H. Akyar, E.Akyar, A Graphical Method for Interval Matrix Games, Abstract and Applied Analysis, 2011 doi: 10. I 155/2011/260490.
  • 5D.W.Collins and C.Hu, Studying interval valued matrix games with fuzzy logic, Soft Computing, vol.12, no.2, pp. 147-155, 2008.
  • 6P.K. Nayak and M.Pal, The bi-matrix games with interval payoffs and its Nash equilibrium strategy, Journal of Fuzzy Mathematics, vol. 17, no.2, pp.421-435, 2009.
  • 7A.Sengupta, T.K.Pal, and D.Chakraborty, Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming, Fuzzy Sets and Systems, vol.119, no.l, pp.129-138, 2001.
  • 8P.K.Nayak and M.Pal, Solution of rectangular interval games using graphical method, Tamsui Oxford Journal of Mathematical Sciences, vol,22, no.l, pp.95-115, 2006.
  • 9A.Sengupta and T.K.Pal, On comparing interval numbers, European Journal of Operational Research 127 (2000) 28-43.
  • 10L.V.Koloba~kina, Osnovm Teorii |gr, M.; BiNOM. Laboratiriya znaniy, 2011.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部