期刊文献+

Vertical structure of longitudinal differences in electron densities at mid-latitudes 被引量:4

Vertical structure of longitudinal differences in electron densities at mid-latitudes
原文传递
导出
摘要 By using Constellation Observing System for Meteorology, Ionosphere, and Climate satellite observa- tions, and Global Ionosphere and Thermosphere Model simulations, the altitudinal dependences of the longitudinal differences in electron densities Ne were studied at mid- latitudes for the first time. Distinct altitudinal dependences were revealed: (1) In the northern (southern) hemisphere, there were wave-1 variations mainly in the daytime in the altitudes below 180 km, but wave-2 (wave-l) variations over a whole day above 220 km; (2) a transition (or sep- aration) layer occurred mainly in the daytime within 180 and 220 km, showing reversed longitudinal variation from that at lower altitudes. Solar illumination was one of the plausible mechanisms for the zonal difference of Ne at lower altitudes. At higher altitudes, both neutral winds and solar illumination played important roles. The neutral winds effects accounted for the longitudinal differences in Ne in the European-Asian sector. Neutral composition changes and neutral wind effects both contributed to the formation of the transition layer. 由使用为气象学,电离层,和气候卫星观察系统的星座,观察,和全球电离层和 Thermosphere 为模拟建模,在电子密度 Ne 的纵的差别的高度的依赖被学习在中间纬度第一次。不同高度的依赖被揭示:(1 ) 在里面北(南部) 半球,在在低于 180 的高度的白天主要有 wave-1 变化 ? 在超过 220 的一整个天的 km,而是 wave-2 (wave-1 ) 变化 ? km;(2 ) 转变(或分离) 层主要在白天发生在 180 和 220 以内 ? km,在更低的高度的从那的出现颠倒的纵的变化。太阳的照明是为在更低的高度的 Ne 的带的差别的嘴巧的机制之一。在更高的高度,中立的风和太阳的照明起了重要作用。中立的风效果在 EuropeanAsian 部门在 Ne 说明了纵的差别。中立作文变化和中立的风效果两个都贡献了转变层的形成。
出处 《Science Bulletin》 SCIE EI CAS CSCD 2016年第3期252-262,共11页 科学通报(英文版)
关键词 Electron density Neutral wind.Atmospheric composition Solar illumination 中纬度地区 电子密度 纵向结构 太阳能照明 海拔高度 低海拔地区 高海拔地区 东北亚地区
  • 相关文献

参考文献26

  • 1Zhang S, Foster JC, Coster AJ et al (2011) East-West Coast differences in total electron content over the continental US. Geophys Res Lett 38:L19101.
  • 2Zhang S, Foster JC, Holt JM et al (2012) Magnetic declination and zonal wind effects on longitudinal differences of ionospheric electron density at midlatitudes. J Geophys Res 117:A08329.
  • 3Zhang S, Chen Z, Coster AJ et al (2013) Ionospheric symmetry caused by geomagnetic declination over North America. Geophys Res Lett 40:5350-5354.
  • 4Zhao B, Min W, Wang Y et al (2013) East-west differences in F-region electron density at midlatitude: evidence from the far east region. J Geophys Res 118:542-553.
  • 5Xu JS, Li XJ, Liu YW et al (2014) TEC differences for the mid- latitude ionosphere in both sides of the longitudes with zero declination. Adv Space Res 54:883-895.
  • 6Luan X, Dou X (2013) Seasonal dependence of the longitudinal variations of nighttime ionospheric electron density and equiva- lent winds at southern midlatitudes. Ann Geophys 31:1699-1708.
  • 7Wang H, Ridley AJ, Zhu J (2015) Theoretical study of zonal differences of electron density at midlatitudes with GITM sim- ulation. J Geophys Res 120:2951-2966.
  • 8Brahmanandam PS, Chu YH, Wu KH et al (2011) Vertical and longitudinal electron density structures of equatorial E- and F-regions. Ann Geophys 29:81-89.
  • 9Xiong C, LiJhr H (2014) The Mid-latitude Summer Night Ano- maly as observed by CHAMP and GRACE: interpreted as tidal features. J Geophys Res 119:4905-4915.
  • 10Liu H, Thampi SV, Yamamoto M (2010) Phase reversal of the diurnal cycle in the midlatitude ionosphere. J Geophys Res 115:A01305.

同被引文献23

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部