期刊文献+

Asymptotics of the quantization errors for in-homogeneous self-similar measures supported on self-similar sets

Asymptotics of the quantization errors for in-homogeneous self-similar measures supported on self-similar sets
原文传递
导出
摘要 We study the quantization for in-homogeneous self-similar measures μ supported on self-similar sets.Assuming the open set condition for the corresponding iterated function system, we prove the existence of the quantization dimension for μ of order r ∈(0, ∞) and determine its exact value ξ_r. Furthermore, we show that,the ξ_r-dimensional lower quantization coefficient for μ is always positive and the upper one can be infinite. A sufficient condition is given to ensure the finiteness of the upper quantization coefficient. We study the quantization for in-homogeneous self-similar measures μ supported on self-similar sets.Assuming the open set condition for the corresponding iterated function system, we prove the existence of the quantization dimension for μ of order r ∈(0, ∞) and determine its exact value ξ_r. Furthermore, we show that,the ξ_r-dimensional lower quantization coefficient for μ is always positive and the upper one can be infinite. A sufficient condition is given to ensure the finiteness of the upper quantization coefficient.
作者 ZHU SanGuo
出处 《Science China Mathematics》 SCIE CSCD 2016年第2期337-350,共14页 中国科学:数学(英文版)
基金 supported by China Scholarship Council(Grant No.201308320049)
关键词 condensation system in-homogeneous self-similar measures quantization coefficient quantizationdimension 量化误差 自相似集 均匀 迭代函数系统 充分条件 有限性
  • 相关文献

参考文献21

  • 1Gray R, Neuhoff D. Quantization. IEEE Trans Inform Theory, 1998, 44:2325-2383.
  • 2Gruber P M. Optimum quantization and its applications. Adv Math, 2004, 186:456 497.
  • 3Hua S, Li W X. Packing dimension of generalized Moran sets. Progr Natur Sci, 1996, 6:148 152.
  • 4Hutchinson J E. Fractals and self-similarity. Indiana Univ Math J, 1981, 30:713-747.
  • 5Kreitmeier W. Optimal quantization for dyadic homogeneous Cantor distributions. Math Nachr, 2008, 281:1307-1327.
  • 6Lasota A. A variational principle for fractal dimensions. Nonlinear Anal, 2006, 64:618-628.
  • 7Olsen L, Snigireva N. Multifractal spectra of in-homogenous self-similar measures. Indiana Univ Math J, 2008, 57: 1787-1841.
  • 8Pages G. A space quantization method for numerical integration. J Comput Appl Math, 1997, 89:1-38.
  • 9P5tzelberger K. The quantization dimension of distributions. Math Proc Cambridge Philos Soc, 2001, 131:507 519.
  • 10Roychowdhury M. Quantization dimension estimate of inhomogeneous self-similar measures. Bull Pol Acad Sci Math, 2013, 61:35 45.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部