期刊文献+

MicroRNA调节豆科作物营养胁迫响应的研究进展 被引量:3

Advances on the study of microRNA-mediated responses to nutrient stress in legume crops
下载PDF
导出
摘要 micorRNA(miRNA)是一类长度为20 24个核苷酸的非编码小RNA(small RNA,sRNA),在植物生长发育、生物和非生物胁迫响应方面起十分重要作用。越来越多的证据表明,miRNA在植物适应养分胁迫方面起重要的调节作用。豆科植物是一类具有生物固氮能力的植物,为人类提供蛋白和食用油,显然土壤养分胁迫会抑制豆科作物生长发育而降低产量。过去数十年对于miRNA介导模式植物拟南芥和水稻养分胁迫响应的研究较多,但近年来有关豆科作物养分胁迫相关的miRNA报道在增加。近年研究结果表明,miRNA通过对靶基因的调节在豆科植物适应营养胁迫中起关键作用,如感受外界养分状态的改变及维持体内养分的动态平衡。本文综述了近年来miRNA介导豆科作物适应养分胁迫的研究进展,主要对磷、氮、硫、铁、铜、钙等养分亏缺或毒害反应的调控,讨论了miRNA调节豆科作物适应养分胁迫的机理,并对今后豆科作物miRNA的研究做出了展望。 MicroRNA( miRNA) is one kind of non-coding small RNA( sRNA),and has 20- 24 nucleotides in length,and plays important roles in plant growth development and in response to biotic and abiotic stress. Many evidences have shown that miRNA is crucial modulator in adaptations of plant to nutrient stress. Legume plants could fix nitrogen from atmosphere and provide proteins as well as edible oil for human being. Nutrient stresses in soils obviously inhibit legume growth and development,and result in a decrease in yield. In past decades,most studies on mediation roles of miRNA in responses to nutrient stresses in Arabidopsis and rice have been characterized,respectively. However,recent studies have witnessed emerging reports on the functions of miRNA in response to nutrient stress in legumes,and revealed crucial roles of miRNAs in adaptations of legumes to various adverse nutrient conditions via modulating activity of target genes such as sensing alteration of nutrient status and fine-tuning nutrient homeostasis. In this review,the regulation role of miRNAs in response to different nutrient stresses was reviewed,especially in response to the stresses from phosphorus( P),nitrogen( N),sulphur( S),iron( Fe),copper( Cu) deficiencies and calcium( Ca) toxicity,and the mechanisms of miRNAs involved in the adaptations of legume to different kinds of nutrient stress were discussed,and the perspective of research on nutrient-related miRNA in legume was outlined in the near future.
作者 徐锋 王金祥
出处 《植物营养与肥料学报》 CAS CSCD 北大核心 2016年第1期236-244,共9页 Journal of Plant Nutrition and Fertilizers
基金 农业部转基因专项(2014ZX0800928B) 科技部重大基础研究专项基金973项目(2011CB100301)资助
关键词 MIRNA 营养胁迫 豆科作物 miRNA nutrient stress legume crops
  • 相关文献

参考文献82

  • 1Mantri N, Basker N, Ford R, et al.The role of miRNAs in legumes with a focus on abiotic stress response [J]. The Plant Genome, 2013, 6(3): 1-14.
  • 2Hirsch A M. Developmental biology of legume nodulation [J]. New Phytologist, 1992, 122(2): 211-237.
  • 3Parniske M. Arbuscularmycorrhiza: the mother of plant rootendosymbioses [J]. Nature Reviews of Microbiology, 2008, 6(10): 763-775.
  • 4Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function [J]. Cell, 2004, 116(2): 281-297.
  • 5Jones-Rhoades M W, Bartel D P, Bartel B. MicroRNAs and their regulation roles in plant [J]. Annual Reviews of Plant Biology, 2006, 57: 19-53.
  • 6Zeng H Q, Wang G P, Hu X Y, et al. Role of microRNAs in plant responses to nutrient stress [J]. Plant and Soil, 2014, 374(1-2): 1005-1021.
  • 7Simon S A, Meyers B C, Sherrier D J. MicroRNAs in the rhizobia legume symbiosis [J]. Plant Physiology, 2009, 151(3): 1002-1008.
  • 8Branscheid A, Sieh D, Pant B D, et al. Expression pattern suggestsa role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscularmycorrhizal symbiosis[J]. Molecular Plant-Microbe Interactions, 2010, 23(7): 915-926.
  • 9Kai Z S, Pasquinelli A E. MicroRNA assassins: factors that regulatethe disappearance of miRNAs [J]. Nature Structure and Molecular Biology, 2010, 17(1): 5-10.
  • 10Lee Y, Kim M J, Han J J, et al.MicroRNA genes are transcribed by RNA polymerase II [J]. The EMBO Journal, 2004, 23(20): 4051-4060.

二级参考文献51

  • 1Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell 2009; 136:642-655.
  • 2Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005; 6:376-385.
  • 3Kurihara Y, Watanabe Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA 2004; 101:12753-12758.
  • 4Kurihara Y, Takashi Y, Watanabe Y. The interaction between DCLl and HYLl is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 2006; 12:206-212.
  • 5Park W, Li J, Song R, Messing J, Chen X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 2002; 12:1484-1495.
  • 6Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev 2002; 16:1616-1626.
  • 7Laubinger S, Sachsenberg T, Zeller G, et al. Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc Natl Acad Sci USA 2008; 105:8795-8800.
  • 8Kim S, Yang N, Xu J, Jang IC, Prigge MJ, Chua NH. Two cap-binding proteins CBP20 and CBP80 are involved in processing primary MicroRNAs. Plant Cell Physiol 2008; 49:1634-1644.
  • 9Gregory BD, O'Malley RC, Lister R, et al. A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell 2008; 14:854-866.
  • 10Yu B, Bi L, Zheng B, et al. The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci USA 2008; 105:10073-10078.

共引文献6

同被引文献14

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部