期刊文献+

基于LBM的多孔介质/流体交界面滑移效应细观研究

Study of Slip Effect on Porous Medium and Fluid Interface by Lattice Boltzmann Method
原文传递
导出
摘要 本文采用格子Boltzmann方法对真实多孔介质复合腔体内的自然对流进行了研究,分析了在不同瑞利数Ra、多孔介质厚度δ和高度Y条件下交界面处的滑移效应的变化规律。利用X-CT技术对真实多孔介质材料进行断层扫描,通过Matlab对图片进行处理并导入格子Boltzmann模型中进行求解。计算结果表明:当0.1<Y<0.9,复合腔体交界面速度滑移系数α和应力跳跃系数β随高度Y基本保持不变,而在靠近上下壁面时(Y<0.1和Y>0.9)变化明显;在一定的高度处,α和β均随Ra数发生缓慢变化;多孔介质的厚度δ对α和β影响较小。 The model on natural convection in a cavity partially filled with an actual porous layer was studied and solved numerically by lattice Boltzmann method.The slip effect at the porous/fluid interface was analyzed under different Ra number,height and thickness of the porous medium conditions.The images of real porous structure obtained by X-ray computed tomography technique and processed by Matlab were imported into the lattice Boltzmann model for solving.The numerical results showed that the velocity slip α and stress jump coefficient β would be almost constant with different height(0.1 Y 0.9),but they will change significantly(Y 0.1 and Y 0.9);at a certain height,α and β will reduce gradually with increasing Ra number,but variation with thickness is not obvious.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2016年第2期414-418,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.51076086)
关键词 实际多孔介质复合腔体 格子BOLTZMANN方法 滑移效应 自然对流 交界面 cavity partially filled with actual porous media lattice Boltzmann method slip effect natural convection porous/fluid interface
  • 相关文献

参考文献9

  • 1Beavers G S, Joseph D D. Boundary Conditions at a Nat-urally Permeable Wall [J]. Journal of Fluid Mechanics,1967, 30(1): 197-207.
  • 2Ochoa-Tapia J A, Whitaker S. Momentum Transfer at theBoundary Between a Porous Medium and a HomogeneousFluid-I: Theoretical Development [J]. International Jour-nal of Heat and Mass Transfer, 1995, 38(4): 2635-2646.
  • 3Ochoa-Tapia J A, Whitaker S. Momentum Transfer at theBoundary Between a Porous Medium and a HomogeneousFluid-II: Comparison With Experiment [J]. InternationalJournal of Heat Mass Transfer, 1995, 38(14): 2647-2655.
  • 4Chandesris M, Jamet D. Boundary Conditions at a Pla-nar Fluid-Porous Interface for a Poiseuille Flow [J]. In-ternational Journal of Heat and Mass Transfer, 2006,49(13/14): 2137-2150.
  • 5Jeong N, Choi D H, Lin C L. Prediction of Darcy Fore-hheimer Drag for Micro-Porous Structures of Complex Ge-ometry Using the Lattice Boltzmann Method [J]. Journalof Micromechanics and Microengineering, 2006, 16: 224-2250.
  • 6Wang M, Wang J K, Pan N, et al. Mesoscopic Predic-tions of the Effective Thermal Conductivity for MicroscaleRandom Porous Media [J]. Physical Review E, 2007, 75:036702.
  • 7Guo Z L, Zhao T S. A Lattice Boltzmann Model for Con-vection Heat Transfer in Porous Media [J]. Numerical HeatTransfer, Part B, 2005, 47(2): 157-177.
  • 8De Vahl Davis G. Natural Convection of Air in a SquareCavity: a Bench Mark Numerical Solution [J]. Interna-tional Journal for Numerical Methods in Fluids, 1983,3(3): 249-264.
  • 9Barakos G, Mitsoulis E. Natural Convection Flow in aSquare Cavity Revisited: Laminar and Turbulent ModelsWith Wall Functions [J]. International Journal for Numer-ical Methods in Fluids, 1994, 695-719.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部