期刊文献+

新型风力/洋流涡轮气动及引射特性 被引量:2

Aerodynamic performance and ejection ability of new wind / ocean current turbine
下载PDF
导出
摘要 为高效开发利用低品位风能和洋流能,采用涡扇发动机喷管引射技术,设计含有单级涡轮和波瓣引射器结构的低品位风力/洋流涡轮,给出一种波瓣引射器的参数化方法,并基于CFX软件RANS方程和k-ε湍流模型数值研究涡轮气动和引射特性.结果表明:含单级涡轮和波瓣引射器结构的低品位风力/洋流涡轮可将其转子四周流过的能量通过波瓣引射器引入涡轮后侧,通过流向涡和正交涡共同产生的抽吸作用,降低涡轮转子后侧被压,使有效做功速度增大约1.4倍,等效于提升了能量的品位.在2~6 m/s的风能和2~4 m/s的洋流能利用方面,含单级涡轮和波瓣引射器结构的风力/洋流涡轮功率曲线与来流速度成指数增长,流通能力增大32.70%~35.33%,在低速工况能量利用率可达66%~77%. Turbofan engine nozzle ejector technology was used for the design of a new turbine for efficient utilization of low-grade wind energy and ocean current energy. The turbine was composed of a low-rotation-speed single-stage and a lobed ejector. A parameterized method for building the lobed ejector structure was given. Reynolds-averaged NS equations and k - ~ turbulence model were chosen for numerical study on the aerodynamic performance and ejection ability of the turbine using commercial software CFX. Simulation results indicated the lobed ejector could bring the wind/ oceans currents energy into the back of turbine, the stream-wise vortices and normal vortices behind the lobes were produced to pump the low speed fluid behind the turbine. The effect could make the pressure reduced, the effective velocity almost increased 1.4 times, and the energy grade was improved. In the condition of wind speed ranges from 2 to 6 m/s and ocean current speed ranges from 2 to d m/s, the power output of the turbine exponentially increased as the flow velocity increased, and flow capacity was increased by 32.70%-35.33% than single-stage turbine. The energy utilization efficiency of the turbine went up to 66%-77%.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2016年第1期21-28,共8页 Journal of Harbin Institute of Technology
基金 国家自然科学基金委创新研究群体(51121004)
关键词 波瓣引射器 洋流能 风能 有效做功速度 引射能力 lobed ejector ocean current energy wind energy effective velocity ejection ability
  • 相关文献

参考文献4

二级参考文献45

  • 1刘友宏,谢翌.菊花形混合器混合效率理论计算[J].航空动力学报,2009,24(4):740-745. 被引量:22
  • 2张靖周,李立国,高潮,何文斌.波瓣喷管红外抑制系统的实验研究[J].航空动力学报,1997,12(2):212-214. 被引量:59
  • 3MOUSTAPHA S H, PARON G J, WADE J H T. Secondary flow in cascade of highly loaded turbine blades[R]. ASME 85-GT-135, 1985.
  • 4TOYOTAKA S, TOSHIYUKI A, MARKUS O, et al. A study of advanced high loaded transonic turbine airfoils[R]. ASME GT2004-53773.
  • 5HOSHIO Tsujita, SHIMPEI iXul6, ATSUMASA Yarmrnoto. Numerical investigation of blade profile effects on aero- dynamic performance of ultra-highly loaded turbine cascades[R]. ASME GT2004-53429.
  • 6HOSHIO Tsujita, SHIMPEI Mmuki, ATSUMASA Yarmrmto. Numerical investigation of effects of incidence angle on aerodynamic performance of ultra-highly loaded turbine cascade[R]. ASME GT2006-90939.
  • 7JOHAN H, VALERY C, JONAS L, et al. An experimental investigation of secondary flows and loss development downstream of a highly loaded low pressure turbine outlet guide vane cascade[R]. ASME GT2006-90561.
  • 8Kuchar A P, Chamberlin R. Scale model performance test investigation of exhaust system mixers for an energy efficient engine (E^3)[R]. AIAA Paper 80 0229, 1980.
  • 9Presz Jr W M, Reynolds G, McCormick D. Thrust augmentation using mixer-ejector-diffuser systems[R]. AIAA Paper 94 0020, 1994.
  • 10Power G D, McClure M D, Vinh D. Advanced IR suppresser design using a combined CFD/test approach[R]. AIAA Paper No. 94-3215, 1994.

共引文献19

同被引文献19

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部