摘要
讨论了一般Von Neumann正则环上的零因子图结构,重点刻画了其连通性和顶点性质.若R是有单位元的正则环,则其零因子图Γ(R)连通当且仅当R是直有限的;若R是无单位元的正则环,则其零因子图Γ(R)连通当且仅当R无真的单边恒等元;若R是满足|R|≥5的正则环,则其零因子图Γ(R)的源点和收点可以刻画为Sour(R)={a∈R|a是右可逆的但左不可逆},Sink(R)={a∈R|a是左可逆的但右不可逆}.
In this paper we investigate the zero-divisor graph of von Neumann regular rings,and we focus our main attention on the property of vertices and the connectedness of the zero-divisor graphΓ(R).Let Rbe a von Neumann regular ring with unit 1,we show thatΓ(R)is connected if and only if Ris direct finite.In addition,if Ris a regular ring without unity elements,thenΓ(R)is connected if and only if Rhas no proper one-sided identity elements.For the zero-divisor graphΓ(R)of a regular ring R with|R|≥5,we have that Sour(R)={a∈R|ais right invertible but not left invertible}and Sink(R)={a∈R|ais left invertible but not right invertible}.
出处
《吉首大学学报(自然科学版)》
CAS
2016年第1期11-13,共3页
Journal of Jishou University(Natural Sciences Edition)
基金
国家自然科学基金资助项目(11201177)