期刊文献+

Von Neumann正则环上的零因子图

Zero-Divisor Graph of Von Neumann Regular Rings
下载PDF
导出
摘要 讨论了一般Von Neumann正则环上的零因子图结构,重点刻画了其连通性和顶点性质.若R是有单位元的正则环,则其零因子图Γ(R)连通当且仅当R是直有限的;若R是无单位元的正则环,则其零因子图Γ(R)连通当且仅当R无真的单边恒等元;若R是满足|R|≥5的正则环,则其零因子图Γ(R)的源点和收点可以刻画为Sour(R)={a∈R|a是右可逆的但左不可逆},Sink(R)={a∈R|a是左可逆的但右不可逆}. In this paper we investigate the zero-divisor graph of von Neumann regular rings,and we focus our main attention on the property of vertices and the connectedness of the zero-divisor graphΓ(R).Let Rbe a von Neumann regular ring with unit 1,we show thatΓ(R)is connected if and only if Ris direct finite.In addition,if Ris a regular ring without unity elements,thenΓ(R)is connected if and only if Rhas no proper one-sided identity elements.For the zero-divisor graphΓ(R)of a regular ring R with|R|≥5,we have that Sour(R)={a∈R|ais right invertible but not left invertible}and Sink(R)={a∈R|ais left invertible but not right invertible}.
出处 《吉首大学学报(自然科学版)》 CAS 2016年第1期11-13,共3页 Journal of Jishou University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(11201177)
关键词 Von Neumann正则环 零因子图 连通性 源点 收点 Von Neumann regular rings zero-divisor graphs connectedness sources sinks
  • 相关文献

参考文献8

  • 1BECK I. Coloring of Commutative Rings[J]. Journal Algebra,1988,116..208- 226.
  • 2ANDERSON D F, LIVINGSTON P S. The Zero-Divisor Graph of a Commutative Ring[J]. Journal Algebra, 1999,217:434 - 447.
  • 3REDMOND S P. The Zero-Divisor Graph of a Non-Commutative Ring[J]. Internat. Journal Commutative Rings, 2002,1 (4) :203 - 211.
  • 4WU T S. On Directed Zero-Divisor Graphs of Finite Rings[J]. Disc Math. , 2005,296:73 -86.
  • 5LEVY R, SHAPIRO J. The Zero-Divisor Graph of Von Neumann Regular Rings[J]. Comm. Algebra, 2002,30(2) :745 - 750.
  • 6ANDERSON D F, LEVY R,SHAPIRO J. Zero-Divisor Graphs, Von Neumann Regular Rings, and Boolean Algebras[J]. Journal Pure and Appl. Algebra, 2003,180 : 221 - 241.
  • 7LU Dancheng,WU Tongsuo. The Zero-Divisor Graphs of Abelian Regular Rings[J]. Northeast Math. Journal, 2004,20 (3) :339 - 348.
  • 8GOODEARL K R. Von Neumann Regular Rings[M]. London.. Pitman Publishing Limited, 1979.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部