期刊文献+

增强型残差量化的图像视觉特征不完全检索方法 被引量:1

Enhanced Residual Vector Quantization-based Non-exhaustive Retrieval for Image Visual Features
下载PDF
导出
摘要 针对图像视觉特征的快速检索问题,提出了一种增强型残差量化的不完全检索方法。建立在增强型残差量化的基础上,提出利用多层低复杂度的码书构建包含较大规模倒排列表的多维倒排索引结构,使得只需根据图像视觉特征的量化编码就可以将其快速地插入到倒排索引结构中。此外,结合倒排索引结构,设计了一种不完全检索方法和图像视觉特征之间近似距离的计算方法。通过在公开数据集进行实验和性能对比,所提出不完全检索方法较典型的三种不完全检索方法具有更好的检索精度和检索效率。 A non-exhaustive retrieval method based on enhanced residual vector quantization is proposed for rapid retrieval among image visual features. Built on enhanced residual vector quantization, a multi-inverted index composed of large number of inverted lists is presented, which is constructed by several codebooks of low complexity. Then, a visual feature can be quickly inserted into the index according to its quantization codes. By combining with the multi-inverted index, a non-exhaustive retrieval method is designed, also, the method of computing the approximate distance between image visual features is shown. The experimental results on public datasets show that the proposed non-exhaustive retrieval method outperform 3 existing typical methods over retrieval accuracy and efficiency.
出处 《合肥学院学报(自然科学版)》 2016年第1期46-51,共6页 Journal of Hefei University :Natural Sciences
基金 安徽省自然科学基金项目(1608085MF144 1608085QF131) 安徽省教育厅自然科学研究项目(AQKJ2015B006) 安徽省高校科研创新平台团队项目资助
关键词 图像视觉特征 增强型残差量化 不完全检索 image visual feature enhanced residual vector quantization non-exhaustive retrieval
  • 相关文献

参考文献17

  • 1Beis J S, Lowe D G. Shape Indexing Using Approximate Nearest-neighbour Search in High-dimensional Spaces [ C ]//Pro- ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) ,1997:1000-1006.
  • 2Anan C S, Hartley R. Optimised KD-trees for Fast Image Descriptor Matching[ C ]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2008:1-8.
  • 3Datar M, Immorlica N, Indyk P, et al. Locality-sensitive Hashing Scheme Based on P-stable Distributions [ C ]//Proceedings of the 20th Annual Symposium on Computational Geometry,2004:253-262.
  • 4Yair W, Antonio T, Rob F. Spectral Hashing[ C ]//NIPS,2008 : 1-8.
  • 5Heo J P, Lee Y, He J, et al. Spherical Hashing[ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Rec- ognition (CVPR) ,2012:2957-2964.
  • 6He K, Wen F, Sun J K. K-means Hashing: an Affinity-preserving Quantization Method for Learning Binary Compact Codes[ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) ,2013:1-8.
  • 7Josef S,Andrew Z. Video Google: a Text Retrieval Approach to Object Matching in Video~ C]//Proceedings of IEEE Inter- national Conference on Computer Vision (ICCV) ,2003:1470-1477.
  • 8Herve J, Matthijs D, Cordelia S. Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search[ C ]// Proceedings of ECCV,2008:304-317.
  • 9Herve J, Matthijs D, Cordelia S. Improving Bag-of-feature for Large Scale Image Search [ J ]. International Journal of Comput- er Vision,2010,87 (3) : 316-336.
  • 10Mihir J, Herve J, Patrick G. Asymmetric Hamming Embedding: Taking the Best of Our Bits for Large Scale Image Search [ C ]//Proceedings of the 19th ACM International Conference on Multimedia,2011:1441-1444.

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部