期刊文献+

一种基于广义期望首达时间的形状距离学习算法 被引量:1

A Shape Distance Learning Algorithm Based on Generalized Mean First-passage Time
下载PDF
导出
摘要 形状距离学习是形状匹配框架中引入的后处理步骤,能够有效改善逐对计算得到的形状间距离.利用期望首达时间分析形状间相似度可能导致距离更新不准确,针对这一问题提出了一种基于广义期望首达时间(Generalized mean firstpassage time,GMFPT)的形状距离学习方法.将形状样本集合视作状态空间,广义期望首达时间表示质点由一个状态转移至指定状态集合所需的平均时间步长,本文将其视作更新后的形状间距离.通过引入广义期望首达时间,形状距离学习方法能够有效地分析上下文相关的形状相似度,显式地挖掘样本空间流形中的最短路径,并消除冗余上下文形状信息的影响.将所提出的方法应用到不同形状数据集中进行仿真实验,本文方法比其他方法能够得到更准确的形状检索结果. With the help of shape distance learning introduced into shape matching framework as a post-processing procedure, shape distances obtained by pairwise shape similarity analysis can be improved effectively. A novel shape distance learning method based on generalized mean first-passage time(GMFPT) is proposed to solve the problem of inaccurate matching results caused by mean first-passage time. Given a set of shapes as the state space, the generalized mean first-passage time, which is regarded as the updated shape distance, is used to represent the average time step from one state to a certain set of states. With the generalized mean first-passage time introduced into the distance learning algorithms, context-sensitive similarities can be evaluated effectively, and the shortest paths on the distance manifold can be explicitly captured without redundant context. Simulation experiments are carried out on different shape datasets with the proposed method, and the results demonstrate that the retrieval score can be improved significantly.
出处 《自动化学报》 EI CSCD 北大核心 2016年第2期246-254,共9页 Acta Automatica Sinica
基金 国家自然科学基金(61374154) 中央高校基本科研业务费专项资金(DUT14RC(3)128)资助~~
关键词 形状匹配 形状距离学习 离散时间马尔科夫链 期望首达时间 广义期望首达时间 Shape matching shape distance learning discrete-time Markov chain mean first-passage time generalized mean first-passage time
  • 相关文献

参考文献23

  • 1Hu R X, Jia W, Ling H B, Zhao Y, Gui J. Angular pat- tern and binary angular pattern for shape retrieval. IEEE Transactions on Image Processing, 2014, 23(3): 1118-1127.
  • 2Hong B W, Soatto S. Shape matching using multiscale inte- gral invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(1): 151-160.
  • 3周瑜,刘俊涛,白翔.形状匹配方法研究与展望[J].自动化学报,2012,38(6):889-910. 被引量:85
  • 4Hasanbelliu E, Sanchez G L, Principe J C. Information the- oretic shape matching. IEEE Transactions on Pattern Anal- ysis and Machine Intelligence, 2014, 36(12): 2436-2451.
  • 5BM X, Yang X W, Lateeki L J, Liu W Y, T Z W. Learn- ing context-sensitive shape similarity by graph transduction. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2010, 32(5): 861-874.
  • 6Yang X W, Koknar-Tezel S, Latecki L J. Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval. In: Proceedings of the 2009IEEE Conference on Computer Vision and Pattern Recog- nition. Miami, USA: IEEE, 2009. 357-364.
  • 7Yang X W, Bai X, Latecki L J, Tu Z W. Improving shape retrieval by learning graph transduction. In: Proceedings of the 10th European Conference on Computer Vision. Mar- seille, France: Springer, 2008. 788-801.
  • 8Ling H B, Yang X W, Latecki L J. Balancing deformability and discriminability for shape matching. In: Proceedings of the llth European Conference on Computer Vision. Crete, Greece: Springer, 2010. 411-424.
  • 9Premachandran V, Kakarala R. Perceptually motivated shape context which uses shape interiors. Pattern Recog- nition, 2013, 46(8): 2092-2102.
  • 10Egozi A, Keller Y, Guterman H by spectral matching and meta tions on Image Processing, 2010 Improving shape retrieval similarity. IEEE Transac- 19(5): 1319-1327.

二级参考文献101

  • 1陈晓飞,王润生.目标骨架的多尺度树表示[J].计算机学报,2004,27(11):1540-1545. 被引量:4
  • 2刘文予,刘俊涛.基于骨架树描述符匹配的物体相似性度量方法[J].红外与毫米波学报,2005,24(6):432-436. 被引量:6
  • 3Blum H. Biological shape and visual science (Part I). Jour- nal of Theoretical Biology, 1973, 38(2): 205-287.
  • 4Belongie S, Malik J, Puzicha J. Shape matching and ob- ject recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4): 509--522.
  • 5Daliri M R, Torre V. Robust symbolic representation for shape recognition and retrieval. Pattern Recognition, 2008, 41(5): 1782-1798.
  • 6Ling H B, Jacobs D W. Using the inner-distance for classi- fication of articulated shapes. In: Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recogni- tion (CVPR). Washington, DC, USA: IEEE, 2005. 719-726.
  • 7Ling H B, Jacobs D W. Shape classification using the inner- distance. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2007, 29(2): 286-299.
  • 8Biswas S, Aggarwal G, Chellappa R. Efficient indexing for articulation invariant shape matching and retrieval. In: Pro- ceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Minneapolis, MN: IEEE, 2007. 1-8.
  • 9Grigorescu C, Petkov N. Distance sets for shape filters and shape recognition. IEEE Transactions on Image Processing, 2003, 12(10): 1274-1286.
  • 10Tu Z W, Yuille A. Shape matching and recognition: using generative models and informative features. In: Proceed- ings of the 8th European Conference on Computer Vision (ECCV). Prague, Czech Republic: Springer, 2004. 195-209.

共引文献84

同被引文献4

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部