期刊文献+

基于多特征子空间与核学习的行人再识别 被引量:27

Multi-feature Subspace and Kernel Learning for Person Re-identification
下载PDF
导出
摘要 行人再识别指的是在无重叠视域多摄像机监控系统中,匹配不同摄像机视域中的行人目标.针对当前基于距离测度学习的行人再识别算法中存在着特征提取复杂、训练过程复杂和识别效果差的问题,我们提出一种基于多特征子空间与核学习的行人再识别算法.该算法首先在不同特征子空间中基于核学习的方法得到不同特征子空间中的测度矩阵以及相应的相似度函数,然后通过比较不同特征子空间中的相似度之和来对行人进行识别.实验结果表明,本文提出的算法具有较高的识别率,其中在VIPe R数据集上,RANK1达到了40.7%,且对光照变化、行人姿态变化、视角变化和遮挡都具有很好的鲁棒性. Person re-identification is to match pedestrian images observed from different camera views of non-overlapping multi-camera surveillance systems. The current person re-identification based on metric learning is complicated for feature extraction and training process, and has low performance. Therefore, we propose a multi-feature subspace and kernel learning based method for person re-identification. The distance metric and similarity functions can be achieved firstly in different feature subspaces by kernel learning. Then, the object can be recognized by comparing the sum of similarity of different feature subspaces. Experimental results show that the proposed method has a higher accuracy rate, achieving a40.7 % rank-1 recognition rate on the VIPe R benchmark and that it is robust to different viewpoints, illumination changes,varying poses and the effects of occlusion.
出处 《自动化学报》 EI CSCD 北大核心 2016年第2期299-308,共10页 Acta Automatica Sinica
基金 国家自然科学基金(61371155) 安徽省科技攻关项目(1301b042023)资助~~
关键词 行人再识别 特征空间 测度学习 核学习 Person re-identification feature space metric learning kernel learning
  • 相关文献

参考文献32

  • 1Swain M J, Ballard D H. Indexing via color histograms. In: Proceedings of the 3rd International Conference on Computer Vision. Osaka, Japan: IEEE, 1990. 390-393.
  • 2Gray D, Brennan S, Tao H. Evaluating appearance mod- els for recognition, reacquisition, and tracking. In: Pro- ceedings of the 2007 IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. Rio de Janeiro, Brazil: IEEE. 2007. 41-47.
  • 3Farenzena M, Bazzani L, Perina A, Murino V, Cristani M. Person re-identification by symmetry-driven accumu- lation of local features. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, USA: IEEE, 2010. 2360-2367.
  • 4Ma B P, Su Y, Jurie F. BiCov: a novel image representa- tion for person re-identification and face verification. In: Proceedings of the 23rd British Machine Vision Confer- ence. Surrey, UK: IEEE, 2012. 1-6.
  • 5Cheng D S, Cristani M, Stoppa M, Bazzani L, Murino V. Custom pictorial structures for re-identification. In: Pro- ceedings of the 22nd British Machine Vision Conference. Dundee, UK: IEEE, 2011. 749-760.
  • 6Liu C X, Gong S G, Loy C C, Lin X G. Person re- identification: what features are important? In: Pro- ceedings of the 12th European Conference on Computer Vision. Florence, Italy: IEEE, 2012. 391-401.
  • 7Wang X G, Doretto G, Sebastian T, Rittscher J, Tu P. Shape and appearance context modeling. In: Proceed- ings of the llth International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-8.
  • 8Li W, Zhao R, Xiao T, Wang X G. DeepReID: deep fil- ter pairing neural network for person re-identification. In: Proceedings of the 2014 IEEE Conference on Com- puter Vision and Pattern Recognition (CVPR). Colum- bus, USA: IEEE, 2014. 152-159.
  • 9Ahmed E, Jones M, Marks T K. An improved deep learn- ing architecture for person re-identification. In: Proceed- ings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA: IEEE, 2015. 3908-3916.
  • 10Zhao R, Ouyang W L, Wang X G. Unsupervised salience learning for person re-identification. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pat- tern Recognition (CVPR). Portland, USA: IEEE, 2013. 3586-3593.

二级参考文献16

  • 1Duan Gen-quan,Ai Hai-zhou,Xing Jun-liang. Scene aware detection and block assignment tracking in crowded scenes[J].IMAGE AND VISION COMPUTING,2012,(04):292-305.
  • 2Kalal Z,Mikolajczyk K,Matas J. Tracking-learning-detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,(07):1409-1422.
  • 3Dollar P,Wojek C,Schiele B. Pedestrian detection:an evaluation of the state of the art[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,(04):743-761.
  • 4Gray D,Brennan S,Tao Hai. Evaluating appearance models for recognition,reacquisition,and tracking[A].Riode Janeiro,2007.41-47.
  • 5Farenzena M,Bazzani L,Perina A. Person re-identification by symmetry-driven accumulation of local features[A].San Francisco,2010.2360-2367.
  • 6Cheng Dong-seon,Cristani M,Stoppa M. Custom pictorial structures for re-identification[A].Dundee,2011.749-760.
  • 7Gray D,Tao Hai. Viewpoint invariant pedestrian recognition with an ensemble of localized features[A].Marseille,2008.262-275.
  • 8Du Yu-ning,Ai Hai-zhou,Lao Shi-hong. Evaluation of color spaces for person re-identification[A].Tsukuba,2012.1371-1374.
  • 9Prosser B,Zheng Wei-shi,Gong Shao-gang. Person re-identification by support vector ranking[A].Aberystwyth,2010.231-242.
  • 10Kostinger M,Hirzer M,Wohlhart P. Large scale metric learning from equivalence constraints[A].Providence,2012.2288-2295.

共引文献14

同被引文献84

  • 1Golomb B A, Lawrence D T, Sejnowksi T J. SEXNET: a neural network identifies sex from human faces. In: Proceed- ings of Advances in Neural Information Processing Systems (NIPS). Colorado, USA: Morgan Kaufmann Publishers Inc., 1991. 572-579.
  • 2Brunelli R, Poggio T. HyberBF networks for gender classi- fication. In: Proceedings of the 1992 DARPA Image Under- standing Workshop, Detroit, USA, 1992. 311-314.
  • 3Tamura S, Kawai H, Mitsumoto H. Male/female identifi- cation from 8x6 very low resolution face images by neural network. Pattern Recognition, 1996, 29(2): 331-335.
  • 4Jiao Y B, Yang J C, Fang Z J, Xie S J, Park D S. Comparing studies of learning methods for human face gender recogni- tion. In: Proceedings of the 7th Chinese Conference on Bio- metric Recognition (CCBR). Guangzhou, China: Springer, 2012.67-74.
  • 5Verma A, Vig L. Using convolutional neural networks to discover cogntively validated features for gender classifica- tion. In: Proceedings of the 2014 International Conference on Soft Computing and Machine Intelligence (SCMI). New Delhi, India: IEEE, 2014. 33--37.
  • 6Hinton G E, Salakhutdinov R R. Reducing the dimensional- ity of data with neural networks. Science, 2006, 313(5786): 504-507.
  • 7Tivive F H C, Bouzerdoum A. A gender recognition system using shunting inhibitory convolutional neural networks. In: Proceedings of the 2006 IEEE International Joint Confer- ence on Neural Networks (IJCNN). Vancouver, BC: IEEE. 2006. 5336-5341.
  • 8Ciresan D C, Meier U, Gambardella L M, Schmidhuber J. Convolutional neural network committees for handwritten character classification. In: Proceedings of the 2011 Interna- tional Conference on Document Analysis and Recognition. Beijing, China: IEEE, 2011. 1135-1139.
  • 9Khalajzadeh H, Mansouri M, Teshnehlab M. Face recogni- tion using convolutional neural network and simple logistic classifier. In: Proceedings of the 17th Online World Confer- ence on Soft Computing in Industrial Applications. Switzer- land: Springer International Publishing, 2014. 197-207.
  • 10Fan J, Xu W, Wu Y, Gong Y H. Human tracking using con- volutional neural networks. IEEE Transactions on Neural Networks, 2010, 21(10): 1610-1623.

引证文献27

二级引证文献170

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部