期刊文献+

亚共晶Fe-Cr-B-C系堆焊合金的组织及耐磨性 被引量:3

Microstructure and Wear Resistance of Hypoeutectic Fe-Cr-B-C Hardfacing Alloys
下载PDF
导出
摘要 采用药芯焊丝气保焊堆焊方法制备了0.8%~1.6%C(质量分数)的亚共晶Fe-Cr-B-C系耐磨合金,采用光学显微镜,扫描电镜和X射线衍射仪对堆焊合金微观组织和物相进行了分析。结果表明:堆焊合金显微组织是亚共晶组织,由初生γ-Fe枝晶和共晶组织(硼碳化物+共晶基体)组成;元素C能显著增加共晶组织数量,增加共晶组织上共晶基体的尺寸;堆焊合金的耐磨性能主要受作为耐磨骨架的共晶组织数量和形态共同影响,0.8%C堆焊合金的共晶组织数量较少,相对磨损性能仅为9.1;当C含量增加到1.2%时,共晶组织数量明显增加,堆焊合金的磨损性能显著上升至17.2;继续增加C到1.6%时,共晶组织数量最多,但是由于共晶基体尺寸偏大,堆焊合金的磨损性能大幅降低至11.4。 Hypoeutectic Fe-Cr-B-C hardfacing alloys with 0.8%-1.6% C were deposited by flux-cored wire using metal active gas arc welding. The microstructure and phases morphology were investigated by optical microscopy(OM),scanning electron microscopy(SEM) and X-ray diffraction(XRD).The results show that the alloys are hypoeutectic with primary austenite and eutectic structure(boron carbide + eutectic matrix). The volume fraction of eutectic structure and the size of eutectic matrix increased with the C content increasing. The wear resistance of hardfacing alloys is affected by the volume fraction and morphology of eutectic structure. Because of less eutectic structure, the relative wear resistance of 0.8% C hardfacing alloy is just 9.1. When the content of C increases to 1.2%, the relative wear resistance of hardfacing alloys rises significantly to 17.2 for the volume fraction of eutectic structure increasing. When C is added to 1.6%, lots of eutectic structure appear, the relative wear resistance property significantly decreases to 11.4 for the big size of eutectic matrix.
出处 《热加工工艺》 CSCD 北大核心 2016年第1期30-33,共4页 Hot Working Technology
基金 北京市教育委员会科技项目(PXM2014_014204_07_000040)
关键词 堆焊合金 亚共晶 显微组织 耐磨性 hardfacing alloy hypoeutectic microstructure wear resistance
  • 相关文献

参考文献10

二级参考文献34

  • 1刘均波,王立梅,黄继华.等离子熔覆Cr_7C_3/γ-Fe金属陶瓷复合材料涂层的组织与耐蚀性[J].金属热处理,2006,31(3):33-35. 被引量:14
  • 2符寒光,蒋志强.耐磨铸造Fe-B-C合金的研究[J].金属学报,2006,42(5):545-548. 被引量:64
  • 3刘仲礼,李言祥,陈祥,胡开华.高硼铁基合金在不同铸型中凝固的组织与力学性能[J].金属学报,2007,43(5):477-481. 被引量:36
  • 4Kirchgaβner M, Badisch E, Franek F. Behaviour of iron-based h ardfacing alloys under abrasion and impact[J]. Wear, 2008,265 (5 -6) :772 - 779.
  • 5Iakovou R, Bourithis L, Papadimitriou G. Synthesis of boride coatings on steel using plasma transferred arc (PTA) process and its wear performance [J]. Wear, 2002, 252(11 -12):1007-1015.
  • 6Yoo Jeong-wan, Lee Seong-hun, Yoon Chong-S, et al. The effect of boron on the wear behavior of iron-based hardfacing alloys for nuclear power plants valves [ J ]. Journal of Nuclear Materials, 2006,352 ( 1 - 3 ) :90 - 96.
  • 7Guo Changqing, Kelly P M. Boron solubility in Fe-Cr-B cast irons[ J]. Materials Science and Engineering A, 2003, 352 (1 -2) : 40 -45.
  • 8LIU Zhong-li, LI Yan-xiang, CHEN Xiang, et al. Microstructure and mechanical properties of high boron white cast iron[ J]. Materials Science and Engineering A, 2008,486 ( 1 - 2) : 112 - 116.
  • 9Gigolotti J C J, Chad V M, Faria M I S T, et al. Microstructural characterization of as-cast Cr-B alloys[ J ]. Materials Characterization, 2008,59 (1) :47 -52.
  • 10Berns H, Fischer A. Mierostructure of Fe-Cr-C hardfacing alloys with additions of Nb, Ti and B [ J ]. Metallography, 1987, 20 (4) : 401 -429.

共引文献82

同被引文献19

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部