期刊文献+

低功耗微型无线心电节点 被引量:1

Low-power Wireless Micro Ambulatory Electrocardiogram Node
原文传递
导出
摘要 伴随式心电监护能够有效地降低心脏病患者发生危险和死亡的概率。基于人体传感器网络(BSN)的无线心电监护是心功能监测的新方法和有效手段。针对伴随式心电监护中对节点小型化、低功耗以及良好的监测信号质量的要求,提出了一种50mm×50mm×10mm、30g的心电监护节点。节点包括单片心电模拟前端AD8232、超低功耗微处理器MSP430F1611及低功耗蓝牙模块HM-11;实时数字滤波保证了监测心电的信号质量;通过设计的差分阈值R波检测算法可准确地得到心律指标。节点功耗评估以及实际信号采集实验验证了节点功能。提出的节点在伴随式心电监护中具有较好的应用前景。 Ambulatory electrocardiogram(ECG)monitoring can effectively reduce the risk and death rate of patients with cardiovascular diseases(CVDs).The Body Sensor Network(BSN)based ECG monitoring is a new and efficient method to protect the CVDs patients.To meet the challenges of miniaturization,low power and high signal quality of the node,we proposed a novel 50mm×50mm×10mm,30 g wireless ECG node,which includes the single-chip analog front-end AD8232,ultra-low power microprocessor MSP430F1611 and Bluetooth module HM-11.The ECG signal quality is guaranteed by the on-line digital filtering.The difference threshold algorithm results in accuracy of Rwave detection and heart rate.Experiments were carried out to test the node and the results showed that the proposed node reached the design target,and it has great potential in application of wireless ECG monitoring.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2016年第1期8-13,共6页 Journal of Biomedical Engineering
基金 国家自然科学基金项目资助(61571113) 江苏省自然科学基金项目资助(BK2012560) 江苏省研究生创新基金项目资助(CXZZ13_0089)
关键词 人体传感器网络 心电 R波检测 低功耗 Body Sensor Network electrocardiogram R wave detection low power
  • 相关文献

参考文献17

  • 1LUO Kan, LI Jianqing, WU Jianfeng. A dynamic compres- sion scheme for Energy-Efficient Real-Time wireless electrok cardiogram biosensors [J]. 1EEE Trans Instrum Meas, 2014, 63(9) : 2160-2169.
  • 2CHEN Yiping, LI Liming, ZHANG Qiuli, et al. Use of drug treatment for secondary prevention of cardiovascular disease in urban and rural communities of China: China Kadoorie Biobank Study of 0.5 million people [J]. Int J Cardiol, 2014, 172(1) : 88-95.
  • 3HUSheng Shou,KONG Ling Zhi,GAO Run Lin,ZHU Man Lu,WANG Wen,WANG Yong Jun,WU Zhao Su,CHEN Wei Wei,LIU Ming Bo,For the editorial board.Outline of the Report on Cardiovascular Disease in China,2010[J].Biomedical and Environmental Sciences,2012,25(3):251-256. 被引量:95
  • 4雷礼琴,朱婉红.24小时动态心电图在不明原因晕厥患者临床诊断中的应用价值分析[J].实用心脑肺血管病杂志,2014,(6):113-114.
  • 5罗堪,李建清,王志刚,蔡志鹏.心电压缩感知恢复先验块稀疏贝叶斯学习算法[J].仪器仪表学报,2014,35(8):1883-1889. 被引量:7
  • 6MAMAGHAN1AN H, KHALED N, AT1ENZA D, et al. Compressed sensing for real-time energy-efficient ECG corn pression on wireless body sensor nodes [J]. IEEE Trans Biomed Eng, 2011, 58(9): 2456-2466.
  • 7DILMAGHANI R S, BOBARSHAD H, GHAVAMI M, et al. Wireless sensor networks for monitoring physiological sig- nals of multiple patients [J]. IEEE Trans Biomed Circuits Syst, 2011, 5(4): 347-356.
  • 8PANTELOPOULOS A, BOURBAKIS N G. A survey on wearable sensor-based systems for health monitoring and prognosis [J]. IEEE Transactions on Systems Man and Cy- bernetics Part C-Applications and Reviews, 2010, 40 ( 1 ) : 1- 12.
  • 9LIN Chinteng, CHANG Kuaneheng, LIN Chunling, et al. An intelligent telecardiology system using a wearable and wireless ECG to detect atrial fibrillation [J]. IEEE Trans Inf Technol Biomed, 2010, 14(3) : 726-733.
  • 10陈斌,秦丽华.小波阈值去噪在手持心电图机ECG信号中的应用[J].信息系统工程,2010,23(6):72-72. 被引量:1

二级参考文献28

  • 1秦香敏,潘宏侠.小波变换在信号去噪中的应用[J].航天制造技术,2007(1):46-48. 被引量:3
  • 2World Health Organization. Cardiovascular disease.[EB/OL]. Available : http://www. who. int/cardiovas-cular—diseases/en/index. html. 2013.
  • 3ALLSTOT E G,CHEN A Y, DIXON A M R,et al.Compressed sensing of ECG bio-signals using one-bitmeasurement matrices [ C ]. 2011 IEEE 9 th InternationalNew Circuits and Systems Conference (NEWCAS) , Bor-deaux, France, 2011 : 213-216.
  • 4DIXON AMR, ALLSTOT E G, GANGOPADHYAY D,et al. Compressed sensing system considerations for ECGand EMG wireless biosensors[ J]. IEEE Transactions onBiomedical Circuits and Systems, 2012,6(2) : 156-166.
  • 5CANDES E J,TAO T. Near-optimal signal recovery fromrandom projections : Universal encoding strategies [ J ].IEEE Transactions on Information Theory,2006, 52(12): 5406-5425.
  • 6JIAN J,YUANTAO G,SHUNLIANG M. A stochasticgradient approach on compressive sensing signal recon-struction based on adaptive filtering framework [ J ] ?IEEE Journal of Selected Topics in Signal Processing,2010,4(2) : 409-420.
  • 7MISHALI M,ELDAR Y C,DOUNAEVSKY 0,et al.Xampling : Analog to digital at sub-Nyquist rates [ J ].Circuits, Devices & Systems, IET,2011,5(1); 8-20.
  • 8CANDES E J, WAKIN M B. An introduction to compres-sive sampling [ J ]. Signal Processing Magazine,IEEE,2008,25(2) : 21-30.
  • 9ZHANG Z,JUNG T, MAKEIG S, et al. Compressedsensing of EEG for wireless telemonitoring with low ener-gy consumption and inexpensive hardware [ J ]. IEEETransactions on Biomedical Engineering,2013,60(1):221-224.
  • 10MAMAGHANIAN H,KHALED N, ATIENZA D,et al.Compressed sensing for real-time energy-efficient ECGcompression on wireless body sensor nodes [ J ] . IEEETransactions on Biomedical Engineering, 2011,58(9):2456-2466.

共引文献101

同被引文献16

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部