期刊文献+

基于成本函数的对比度优化去雾霾算法 被引量:1

Optimized contrast enhancement for dehazing based on cost function
下载PDF
导出
摘要 针对雾霾条件下的模糊图像,提出一种对比度优化去雾霾算法。基于一般情况下雾霾图像对比度较低的特点,通过增强其对比度恢复模糊图像。然而,过度补偿退化的对比度可能会截断像素值,导致信息损失,为此制定一个包括对比度和信息丢失的成本函数,通过最小化该成本函数,该算法更优化地提高了对比度并保存了信息。实验结果表明,该算法有效去除了雾霾。 A dehazing algorithm based on contrast enhancement for hazy images was proposed.Based on the observation that the hazy image exhibits low contrast in general,the hazy image was restored by enhancing its contrast.However,the overcompensation of the degraded contrast might truncate pixel values and caused information loss.Therefore,a cost function consisting of the contrast term and the information loss term was formulated.By minimizing the cost function,the proposed algorithm enhances the contrast and preserves the information optimally.Experimental results show that the proposed algorithm effectively removes haze.
出处 《计算机工程与设计》 北大核心 2016年第2期460-464,492,共6页 Computer Engineering and Design
关键词 图像去雾霾 大气光估计 提高对比度 成本函数 传输率估计 image dehazing atmospheric light estimation contrast enhancement cost function transmission estimation
  • 相关文献

参考文献9

二级参考文献42

  • 1Narasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision, 2002, 48(3): 233-254.
  • 2Narasimhan S G, Nayar S K. Removing weather effects from monochrome images. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2001. 186-193.
  • 3Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724.
  • 4Scbechner Y Y, Narasimhan S G, Nayar S K. Instant dehazing of images using polarization. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2001. 325-332.
  • 5Schechner Y Y, Narasimhan S G, Nayar S K. Polarization- based vision through haze. Applied Optics, 2003, 42(3): 511-525.
  • 6Namer E, Schechner Y Y. Advanced visibility improvement based on polarization filtered images. In: Proceedings of the Polarization Science and Remote Sensing II. San Diego, USA: SPIE, 2005. 36-45.
  • 7Shwartz S, Namer E, Schechner Y Y. Blind haze separation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2006. 1984-1991.
  • 8Oakley J P, Satherley B L. Improving image quality in poor visibility conditions using a physical model for contrast degradation. IEEE Transactions on Image Processing, 1998, 7(2): 167-179.
  • 9Tan K, Oakley P J. Physics-based approach to color image enhancement in po()r visibility conditions. Optical Society o[America, 2001. 18(10): 2460-2467.
  • 10Narasimhan S G, Nayar S K. Interactive (de) weathering of an image using physical models. In: Proceedings of the ICCV Workshop on Color and Photometric Methods in Computer Vision. Nice, France: IEEE, 2003. 1387-1394.

共引文献191

同被引文献12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部