期刊文献+

基于支持向量机α阶逆系统方法的污水处理内模控制 被引量:4

Internal Model Control of Nonlinear Sewage Disposal System Based on α-order Inverse System of Support Vector Machine
下载PDF
导出
摘要 污水处理系统由于其系统本身的复杂性和变量之间的耦合性导致系统很难进行线性控制,为了实现对污水处理系统的线性控制,采用逆系统进行解耦,利用支持向量机算法来拟合污水处理系统的逆模型,将拟合得到的逆系统模型与原系统相串联复合成伪线性系统,从而将强耦合的污水处理系统解耦成SISO系统。针对伪线性系统在抗干扰性和鲁棒性方面的不足,将内模控制、逆系统方法以及支持向量机三者结合构成基于SVMα阶逆系统的内模控制方法来增强系统的抗干扰性和鲁棒性。 Sewage disposal system has not only strong nonlinearity and high-level time delay, but also strong coupling because of the system's complexity and coupling among variables. As a result, it is very hard to make a system model under normal circumstances. However, inverse system decoupling relies on an accurate model. Therefore, in order to decouple sewage disposal system and make a linear control, this essay is concerned with fitting inverse model of sewage disposal system by means of the SVM and then combines the fitted inverse system with the original system model to form a pseudo-linearization system so as to make the strong coupling sewage disposal system decouple into SISO system. Considering the pseudo-linearization's lack of anti-interference and robustness, the essay aims at putting internal model control, inverse system method and support vector machine together to produce an internal model control method based on SVM α-order inverse system to enhance the anti-interference performance and robustness of the system.
出处 《控制工程》 CSCD 北大核心 2016年第2期185-189,共5页 Control Engineering of China
基金 国家科技支撑计划课题(2014BAC01B04) 安徽省科技攻关重大项目(1301041023) 安徽省工业节电与电能质量控制协同创新中心开放课题(KFKT201410) 安徽省马鞍山市科技计划项目(JN-2011-05)
关键词 支持向量机 内模控制 逆系统 非线性 SVM internal model control inverse system nonlinear
  • 相关文献

参考文献13

二级参考文献33

  • 1钟伟民,皮道映,孙优贤.基于支持向量机的直接逆模型辨识[J].控制理论与应用,2005,22(2):307-310. 被引量:16
  • 2DAI X Z, HE D, ZHANG X, et al. MIMO system invertible and decoupling control strategies based on ANN αth-order inversion[J]. IEE Proceedings: Control Theory and Applications, 2001, 148(2): 60 - 64.
  • 3HENSON M A, SEBORG D E. An internal model control strategy for nonlinear systems[J]. America Institute of Chemical Engineering Journal, 1991, 37(7): 1065 - 1081.
  • 4ALVAREZ J, ZAZUETA S. An internal model controller for a class of single-input single-output nonlinear systems: Stability and robustness[J]. Dynamics and Control, 1998, 8(2): 123 - 124.
  • 5GARCIA C E, MORARI M. Internal model control-2: Design procedure for multivariable system[J]. Industrial Engineering Chemistry Process Design and Development, 1985a, 24(2): 472 - 484.
  • 6GARCIA C E, MORARI M. Internal model control 3: Multivariable control law computationand tuning guidelines[J]. Industrial Engineering Chemistry Process Design and Development, 1985b, 24(2): 484 - 494.
  • 7VAPNIK V N. Statistical Learning Theory[M]. New York: John Wiley Press, 1998.
  • 8SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293 - 300.
  • 9SUYKENS J A K, LULAS L, VANDEWALLE J. Sparse approximation using least squares support vector machine[C]//IEEE International Symposium on Circuits and Systems. Switzerland: Geneva, 2000, 2:757 - 760.
  • 10SUYKENS J A K. Support vector machines: A nonlinear modeling and control perspective[J]. European Journal of Control, 2001, 7(2/3): 311 - 327.

共引文献134

同被引文献39

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部