期刊文献+

面向产品特征的中文在线评论情感分类:以本体建模为方法 被引量:24

Sentiment Classification for Chinese Online Reviews at Product Feature Level through Domain Ontology Method
下载PDF
导出
摘要 在线产品评论反映了用户对产品的体验,对其进行情感分类不仅有利于商家的战略发展,也有助于消费者理性购物。然而,现有研究大多采用上下文无关的情感分类方法,却无法处理褒贬混合的评论及情感词极性随上下文变化的情况,从而导致情感分类的精度不高。针对现有研究的不足,提出一种产品特征级情感分类方法。基于领域本体识别评论中的特征观点对,根据已知极性的评论判断特征观点对的极性。最后,通过加权平均的方法合计评论中各个特征观点对的极性,最终实现对评论的情感分类。为了验证方法的有效性,以手机和数码相机评论为对象设计实验,实验结果表明,本文提出的方法具有一定的领域普适性,能有效识别不同领域评论中的特征观点对,并判断其情感极性。结果还显示,在准确率、召回率和调和评价值3项性能指标上,该方法都优于文档级、句子级和词语级的基线实验方法。 The sentiment classification of product online reviews can facilitate both consumers' rational shopping and companies' business strategy development, for these reviews reflect consumers' feedbacks and contain valuable information. However, most of the literature adopts a context-free sentiment classification method, which is not applicable for reviews mixed with both positive and negative opinions as well as context-sensitive sentiment words, thus resulting in poor performances. We proposes a new sentiment classification method at product feature level based on Chinese online reviews. First, product features and opinions, also known as feature-opinion pairs, are identified with the help of domain ontology. Then the sentiment polarities of feature-opinion pairs are determined with the help of the reviews with given sentiment polarities. The sentiment polarity of unknown review is calculated by the weighted average of the sentiment polarities of features and opinions contained in the reviews. We further conduct several experiments on online reviews of both mobile phone and digital camera to justify theeffectiveness of the proposed approach. Experimental results indicate that the ontology-based method is applicable across heterogeneous product categories for identifying and classifying product features and opinions. The proposed approach significantly outperforms the three baseline methods at document level, sentence level and phrase level, respectively.
作者 尹裴 王洪伟
出处 《系统管理学报》 CSSCI 北大核心 2016年第1期103-114,共12页 Journal of Systems & Management
基金 国家自然科学基金资助项目(70971099 71371144) 上海市哲学社会科学规划课题一般项目(2013BGL004) 中央高校基本科研业务费专项资金资助项目(1200219198)
关键词 情感分类 特征观点对 中文在线评论 领域本体 上下文语境 sentiment classification feature-opinion pair Chinese online reviews domain ontology context
  • 相关文献

参考文献41

  • 1Turney P D. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews [C]//Proc. of the 40th Annual Meeting of the Association for Computational Linguistics, 2002: 417-424.
  • 2Dave K, Lawrence S, Pennock D. Mining the peanut gallery: Opinion extraction and semantic classification of product reviews [C]//Proc. of the 12th Int' 1 Conf. on World Wide Web, 2003: 519-528.
  • 3徐军,丁宇新,王晓龙.使用机器学习方法进行新闻的情感自动分类[J].中文信息学报,2007,21(6):95-100. 被引量:107
  • 4周杰,林琛,李弼程.基于机器学习的网络新闻评论情感分类研究[J].计算机应用,2010,30(4):1011-1014. 被引量:27
  • 5Zhang Z Q, Ye Q, Zhang Z L, et al. Sentiment classification of internet restaurant reviews written in Cantonese[J]. Expert Systems with Applications, 2011, 38:7674-7682.
  • 6王洪伟,郑丽娟,刘仲英,霍佳震.中文网络评论的情感特征项选择研究[J].信息系统学报,2012,6(2):76-86. 被引量:8
  • 7Abbasi A, Chen H, Salem A. Sentiment analysis in multiple languages: Feature selection for opinion classification in web forums [J]. ACM Transactions on Information Systems, 2008, 26(3): 361-395.
  • 8Abbasi A, Zhang Z, Chen H. Selecting attributes for sentiment classification using deature relation networks[J]. IEEE Transactions on Knwledge and Data Engineering, 2011, 23(3): 447-461.
  • 9唐慧丰,谭松波,程学旗.基于监督学习的中文情感分类技术比较研究[J].中文信息学报,2007,21(6):88-94. 被引量:136
  • 10Yao d N, Wang H W, Yin P. Sentiment feature identification from Chinese online reviews[C]//Proc. of the 2011 Int'l Conf. on Computer Science and Education, 2011: 315-322.

二级参考文献86

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:122
  • 3郑旭玲,周昌乐,李堂秋,陈毅东.基于关联规则挖掘的汉语语义搭配规则获取方法[J].厦门大学学报(自然科学版),2007,46(3):331-336. 被引量:5
  • 4谌志群,张国煊.文本挖掘与中文文本挖掘模型研究[J].情报科学,2007,25(7):1046-1051. 被引量:50
  • 5陈骏.基于语义网的文本信息分类技术研究[D].南京:南京理工大学,2007.
  • 6PANG B,LEE L.Opinion mining and sentiment analysis[M].Boston:Now Publishers Inc,2008:8-10.
  • 7HATZIVASSILOGLOU V,MCKEOWN K R.Predicting the semantic orientation of adjectives[C]// Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and 8th Conference of the European Chapter of the Association for Computational Linguistics.Madrid:ACL,1997:174-181.
  • 8TURNEY P D.Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics.Philadelphia:ACL,2002:417-424.
  • 9KAMPS J,MARX M,MOKKEN R J,et al.Using WordNet to measure semantic orientation of adjectives[C]//Proceedings of the 4th International Conference on Language Reseurces and Evalvation.Lisbon:LREC,2004:1115-1118.
  • 10GODBOLE N,SRINIVASAIAH M,SKIENA S.Large-seale sentiment analysis for news and blogs[C]// Proceedings of the International Conference on Weblogs and Seeial Media.Colorado:[s.n.],2007:219-222.

共引文献278

同被引文献237

引证文献24

二级引证文献312

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部