期刊文献+

方酸菁分子中烷基取代基碳链长度对光伏器件活性层形貌的影响

Influence of the length of alkyl substituents on the morphology of the active layer of photovoltaic devices using squaraine as electron donor
原文传递
导出
摘要 以2,4-双[4-(N,N-二苯氨基)-2,6-二羟基苯基](SQ-H)方酸菁为骨架,通过向氮原子上所连接的4个苯基上引入不同长度的烷基取代基(甲基、乙基、正丁基和正己基),合成了分子SQ-C1/C2/C4/C6,并研究了其分子结构与光电性能的构效关系.研究结果显示,对于基于该骨架的化合物而言,烷基链的增加会使分子的摩尔消光系数降低,同时,分子与PC_(71)BM共混膜的粗糙度及相分离程度逐渐增加.接触角测试结果表明,这一形貌变化的本质是由于随不同长度烷基链(疏水性不同)的引入,改变了原有分子骨架的表面能,从而导致其与受体材料间的表面能差异改变所致. A series of squaraine dyes bearing similar molecular skeleton of 2-[4-(N,N-diphenylamino)-2,6-dihydroxyphenyl] squaraine, but different alkyl groups (methyl, ethyl, n-ethyl and n-hexyl) on their nitrogen atoms (SQ-C1/C2/C4/C6), have been designed and synthesized, and the relationship between molecular structures and photovoltaic properties of these dyes was investigated. The results revealed that with increasing alkyl chain length, the molar extinction coefficient of the squaraine compound deceases, while the roughness hence the extent of phase separation of squaraine-PC71BM blend film increased gradually. Water contact measurement results indicated that these morphological changes could be attributed to the change in the surface energy of the squaraine compounds upon different alkyl substitution (i.e., different hydrophobic interaction), which resulted in the change in the difference of surface energy between donor and acceptor materials.
出处 《科学通报》 EI CAS CSCD 北大核心 2016年第3期342-349,共8页 Chinese Science Bulletin
基金 国家自然科学基金(21432005,21190031,21372168) 高等学校博士学科点专项科研基金(20120009130005)资助
关键词 方酸菁 有机太阳能电池 形貌 烷基 表面能 squaraine, organic solar cell, morphology, alkyl chain, surface energy
  • 相关文献

参考文献34

  • 1Lin Y,Li Y,Zhan X.Small molecule semiconductors for high-efficiency organic photovoltaics.Chem Soc Rev,2012,41:4245-4272.
  • 2Yu G,Gao J,Hummelen J C,et al.Polymer photovotaic cells-enhanced efficiencies via a network of internal donor-acceptor heterojunctons.Science,1995,270:1789-1791.
  • 3Park S H,Roy A,Beaupre S,et al.Bulk heterojunction solar cells with internal quantum efficiency approaching 100%.Nat Photonics,2009,3:297-301.
  • 4Peet J,Kim J Y,Coates N E,et al.Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols.Nat Mater,2007,6:497-500.
  • 5Pingree L S C,Reid O G,Ginger D S.Imaging the evolution of nanoscale photocurrent collection and transport networks during annealing of polythiophene/fullerene solar cells.Nano Lett,2009,9:2946-2952.
  • 6Graham K R,Mei J,Stalder R,et al.Polydimethylsiloxane as a macromolecular additive for enhanced performance of molecular bulk heterojunction organic solar cells.ACS Appl Mater Interfaces,2011,3:1210-1215.
  • 7Wei G,Wang S,Renshaw K,et al.Solution-processed squaraine bulk heterojunction photovoltaic cells.ACS Nano,2010,4:1927-1934.
  • 8Wei G,Wang S,Sun K,et al.Solvent-annealed crystalline squaraine:PC70BM (1:6) solar cells.Adv Energy Mater,2011,1:184-187.
  • 9Chen H,Hsiao Y C,Hu B,et al.Tuning the morphology and performance of low bandgap polymer:Fullerene heterojunctions via solvent annealing in selective solvents.Adv Funct Mater,2014,24:5129-5136.
  • 10Zhang Z G,Li Y.Side-chain engineering of high-efficiency conjugated polymer photovoltaic materials.Sci China Chem,2014,58:192-209.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部