期刊文献+

一种基于筛选机制的快速概率占据图目标定位算法 被引量:2

A Sifting Mechanism Based Object Localization Algorithm for Fast Probabilistic Occupancy Map
原文传递
导出
摘要 提出一种基于筛选机制的快速概率占据图目标定位算法(SPOM),在多视角监控环境下,该方法能够快速准确地计算出进入场景中运动物体的位置.具体而言,首先设计了一种高效的筛选机制,可以根据运动检测的结果,粗略估计出运动目标在3维空间中的位置;然后建立合适的似然模型,利用贝叶斯方法计算出目标出现在备选区域内各个位置上的概率,从而找到目标物体;最后,通过阈值化概率图的方法得到目标的位置信息,并采用粒子滤波器对定位结果进行校正,以进一步提高定位的准确度.相较于通常的概率占据图算法,该算法通过引入筛选机制来筛除目标不可能出现的位置,可大幅减小概率占据图的计算量,提高了运行速度,并且能够更准确地计算出目标物体的位置.基于自行搭建的实验平台,对这种基于筛选机制的定位算法和通常的概率占据图算法进行了对比实验,实验结果验证了本文算法能够更加快速准确地估计出动态目标的位置. A sifting mechanism based object localization algorithm for fast probabilistic occupancy map(sifted probabilistic occupancy map, SPOM) is proposed to calculate the positions of moving objects fast and accurately in typical multi-view surveillance scenarios. Specifically, an efficient sifting mechanism is designed firstly to roughly estimate the 3D positions of the moving objects according to the output of motion detection. Secondly, a proper likelihood model is set up by Bayesian method to calculate the occupancy probability of the objects for each position within the sifted region. Finally, object positions are obtained according to a pre-set threshold of probabilistic occupancy map, and particle filter is utilized to adjust the results to improve the localization accuracy. Compared with the conventional probabilistic occupancy map(POM), the proposed method can decrease the computational overload dramatically by discarding the impossible object positions through the sifting process, therefore the running speed is improved, and it simultaneously provides more accurate estimations for object positions. Based on the self-built experimental platform, comparative experiments of SPOM and POM are conducted,and the obtained results demonstrate that the proposed method can locate the moving objects more quickly and accurately.
出处 《机器人》 EI CSCD 北大核心 2016年第1期17-26,共10页 Robot
基金 国家科技支撑计划(2013BAF07B03) 国家自然科学基金(61203333) 教育部高等学校博士学科点专项科研基金(20120031120040) 天津市应用基础与前沿技术研究计划(13JCQNJC03200)
关键词 智能视频监控 多视角目标定位 贝叶斯方法 产生式模型 intelligent visual surveillance multi-view object localization Bayesian method generative model
  • 相关文献

参考文献21

  • 1Aghajan H, Cavallaro A. Multi-camera networks: Principles and applications[M]. Burlington, USA: Academic Press, 2009.
  • 2黄凯奇,陈晓棠,康运锋,谭铁牛.智能视频监控技术综述[J].计算机学报,2015,38(6):1093-1118. 被引量:403
  • 3Possegger H, Stemig S, Mauthner T, et al. Robust real-time tracking of multiple objects by volumetric mass densities[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2013: 2395-2402.
  • 4Zhang X B, Fang Y C, Sun N. Minimum-time trajectory plan- ning for underactuated overhead crane systems with state and control constraints[J]. IEEE Transactions on Industrial Elec- tronics, 2014, 61(12): 6915-6925.
  • 5Bouwmans T. Traditional and recent approaches in background modeling for foreground detection: An overview[J]. Computer Science Review, 2014, 11-12: 31-66.
  • 6Goyette N, Jodoin P M, Porikli E et al. Changedetection.net: A new change detection benchmark dataset[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recogni- tion Workshops. Piscataway, USA: IEEE, 2012:1 - 8.
  • 7Zhao Z J, Bouwmans T, Zhang X B, et al. A fuzzy back- ground modeling approach for motion detection in dynamic backgrounds[C]//2nd International Conference on Multimedi- a and Signal Processing. Berlin, Germany: Springer-Verlag, 2012: 177-185.
  • 8Fleuret F, Berclaz J, Lengagne R, et al. Multicamera people tracking with a probabilistic occupancy map[J]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 2008, 30(2): 267-282.
  • 9Krumm J, Harris S, Meyers B, et al. Multi-camera multi-person tracking for easyliving[C]//3rd IEEE International Workshop on Visual Surveillance. Piscataway, USA: IEEE, 2000: 3-10.
  • 10Andersen M, Andersen R S, Katsarakis N, et al. Three- dimensional adaptive sensing of people in a multi-camera set-up[C]//18th European Signal Processing Conference. Piscat- away, USA: IEEE, 2010: 964-968.

二级参考文献207

  • 1王素玉,沈兰荪.智能视觉监控技术研究进展[J].中国图象图形学报,2007,12(9):1505-1514. 被引量:82
  • 2Bouwmans T, El Baf F, Vachon B. Background modeling using mixture of Gaussians for foreground detection: A survey. Recent Patents on Computer Science, 2008, 1(3) 219-237.
  • 3Wojek C, Dollar P, Schiele B, Perona P. Pedestrian detection: An evaluation o{ the state o{ the art. IEEE Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761.
  • 4Yilmaz A, Javed O, Shah M. Object trackingt A survey. ACM Computing Surveys (CSUR), 2006, 38(4) 1-29.
  • 5Wang X. Intelligent multi-camera video surveillance: A review. Pattern Recognition Letters, 2012, 34 (1) : 3-19.
  • 6Wu Y, Lira J, Yang M H. Online object tracking: A bench- mark//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013 2411-2418.
  • 7Andreopoulos A, Tsotsos J K. 50 years of object recognition: Directions forward. Computer Vision and Image Understanding, 2013, 117(8) 827-891.
  • 8Zhang X, Yang Y H, Han Z, et al. Object class detection: A survey. Association for Computing Machinery Computing Surveys (CSUR), 2013, 46(1) : 1311-1325.
  • 9Morris B T, Trivedi M M. A survey of vision-based trajectory learning and analysis for surveillance. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(8): 1114-1127.
  • 10Aggarwal J K, Ryoo M S. Human activity analysis: A review. ACM Computing Surveys, 2011, 43(3): 16.

共引文献402

同被引文献14

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部