期刊文献+

两端吸附式焊缝修形爬壁机器人研制 被引量:13

Wall Climbing Robot Based on Two-end Adsorption for Weld Seam Amending
原文传递
导出
摘要 针对大型钢结构件曲面补焊焊缝自动化修形需求,研制了一种特殊结构的爬壁机器人.该机器人的末端修形单元和移动平台均以永磁间隙吸附方式吸附于工件表面,通过含主被动关节的多自由度机械臂相连接.采用数学模型分析了新机构相对于传统单端吸附、串联悬臂式爬壁机器人的优点,计算了末端修形单元的吸附力条件.对试制的机器人样机进行的性能参数测试证明:两端吸附方式不仅大幅度降低对机械臂的刚度要求,同时,机械臂的被动关节使得爬壁机器人具有曲面自适应能力. In order to carry out automatic weld seam amending on large-scale steel-made components, a special wall climbing robot scheme is proposed and developed. Both ends, i.e., repairing end effector and mobile platform of the robot,are adsorbed to the surface of workpiece with permanent magnets in a noncontact manner. These two adsorbed ends are linked by a multi-degree-of-freedom manipulator which consists of several active and passive joints. The requirements of adsorption force for the repairing end effector is described mathematically, and advantages of the new mechanism are analyzed and compared with the wall climbing robot composed of single-end adsorption and serial cantilever manipulator.Finally, a prototype robot is produced, and performance parameters of the robot are testified. It is proven that the manner of two-end adsorption can greatly decrease the demands for the manipulator’s stiffness, furthermore, the passive joints of the manipulator bring adaptabilities to climbing robot on curved surfaces.
出处 《机器人》 EI CSCD 北大核心 2016年第1期122-128,共7页 Robot
基金 国家自然科学基金(51475259) 国家863计划(2007AA04Z258)
关键词 爬壁机器人 焊缝修形 两端吸附 刚度 被动关节 wall climbing robot weld seam amending two-end adsorption stiffness passive joint
  • 相关文献

参考文献7

  • 1桂仲成,陈强,孙振国,张文增,刘康.水轮机叶片修复机器人的移动平台[J].机械工程学报,2006,42(11):156-161. 被引量:5
  • 2Park J W, Cho H U, Chung C W, et al. Modeling and grind- ing large sculptured surface by robotic digitization[J]. Joumal of Mechanical Science and Technology, 2012, 26(7): 2087-2091.
  • 3王伟,贠超.砂带磨削机器人的灵活性分析与优化[J].机器人,2010,32(1):48-54. 被引量:17
  • 4Hazel B, C6t6 J, Laroche Y, et al. Field repair and construction of large hydropower equipment with a portable robot[J]. Journal of Field Robotics, 2012, 29(1): 102-122.
  • 5Haze/ B, C6t6 J, Larocbe Y, et al. A portable, multiprocess, track-based robot for in situ work on hydropower equipment[J]. Journal of Field Robotics, 2012, 29(1): 69-101.
  • 6Chen Q, Sun Z G, Zhang W Z, et al. A robot for welding repair of hydraulic turbine blade[C]//IEEE International Conference on Robotics, Automation and Mechatronics. Piscataway, USA: IEEE, 2008: 155-159.
  • 7桂仲成,陈强,孙振国,张文增,刘康.爬壁机器人永磁吸附装置的优化设计[J].电工技术学报,2006,21(11):40-46. 被引量:40

二级参考文献26

  • 1潘沛霖,韩秀琴,赵言正,闫国荣.日本磁吸附爬壁机器人的研究现状[J].机器人,1994,16(6):379-382. 被引量:55
  • 2王东署,李光彦,徐方,徐心和.机器人标定算法及在打磨机器人中的应用[J].机器人,2005,27(6):491-496. 被引量:13
  • 3毕诸明.机器人姿态空间的分析与综合[J].机械科学与技术,1996,15(1):11-16. 被引量:14
  • 4徐卫良.机器人工作空间分析的蒙特卡洛方法[J].东南大学学报(自然科学版),1990,20(1):1-8. 被引量:11
  • 5蒋金山,何春雄,潘少华.最优化计算方法[M].广州:华南理工大学出版社,2007.
  • 6Sun Y. Development of a unified flexible grinding process[D]. USA: University of Connecticut, 2004.
  • 7Whitney D E, Brown M L. Metal removal models and process planning for robot grinding[C]//17th International Symposium on Industrial Robots. 1987: 19-29.
  • 8Persoons W, Vanherck P. A process model for robotic cup grinding[J]. CIRP Annals - Manufacturing Technology, 1996, 45( 1): 319-325.
  • 9Sun Y, Giblin J, Kazerounian K. Accurate robotic belt grinding of workpieces with complex geometries using relative calibration techniques[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(1): 204-210.
  • 10Huang H, Gong Z, Chen X Q, et al. Smart robotic system for 3D profile turbine vane airfoil repair[J]. Intemationai Journal of Advanced Manufacturing Technology, 2003, 21(4): 275-283.

共引文献59

同被引文献108

引证文献13

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部