期刊文献+

Helium-3 production from Pb+Pb collisions at SPS energies with the UrQMD model and the traditional coalescence afterburner 被引量:1

Helium-3 production from Pb+Pb collisions at SPS energies with the UrQMD model and the traditional coalescence afterburner
原文传递
导出
摘要 A potential version of the UrQMD (UrQMD/M) transport model and a traditional coalescence model are combined to calculate the production of 3He fragments in central Pb+Pb collisions at SPS energies 20-80 GeV/nucleon. It is found that the Lorentz transformation in the afterburner influences visibly the 3He yield and should be considered in calculations. The rapidity distribution of 3He multiplicities (including the concave shape) can be described well with UrQMD/M when it stops during tout=(100+25) fm/c and the coalescence afterburner with one parameter set of (R0,P0)=(3.8 fm, 0.3 GeV/c) is taken into use afterwards. A potential version of the UrQMD(UrQMD/M) transport model and a traditional coalescence model are combined to calculate the production of ~3He fragments in central Pb+Pb collisions at SPS energies 20-80 Ge V/nucleon. It is found that the Lorentz transformation in the afterburner influences visibly the ~3He yield and should be considered in calculations. The rapidity distribution of ~3He multiplicities(including the concave shape) can be described well with Ur QMD/M when it stops during t_cut=(100±25) fm/c and the coalescence afterburner with one parameter set of(R_0,P_0)=(3.8 fm, 0.3 Ge V/c) is taken into use afterwards.
机构地区 School of Science
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2016年第3期66-69,共4页 中国科学:物理学、力学、天文学(英文版)
基金 the National Natural Science Foundation of China(Grant Nos.11375062,11275068,11505056,and 11505057) the project sponsored by SRF for ROCS,SEM,the Education Bureau of Zhejiang Province(Grant No.Y201533176) the Doctoral Scientific ResearchFoundation(Grant No.11447109)
关键词 rapidity distribution of Helium-3 UrQMD model coalescence model Lorentz transformation SPS QMD模型 Pb 加力 传统 碰撞 氦-3 生产
  • 相关文献

参考文献27

  • 1R. Arsenescu, et al. (NA52 Collaboration), New J. Phys. 5, 150 (2003).
  • 2T. Anticic, et al. (NA49 Collaboration), Phys. Rev. C 69, 024902 (2004).
  • 3S. C. Johnson, UMI-98-22959.
  • 4S. Chekanov, et al. (ZEUS Collaboration), Nucl. Phys. B 786, 181 (2007).
  • 5T. Anticic, et al. (NA49 Collaboration), Phys. Rev. C 85, 044913 (2012).
  • 6P. Newman, and M. Wing, Rev. Mod. Phys. 86(3), 1037 (2014).
  • 7R. Mattiello, A. Jahns, H. Sorge, H. Stoecker, and W. Greiner, Phys. Rev. Lett. 74, 2180 (1995).
  • 8J. L. Nagle, B. S. Kumar, D. Kusnezov, H. Sorge, and R. Mattiello, Phys. Rev. C 53, 367 (1996).
  • 9B. Monreal, S. A. Bass, M. Bleicher, S. Esumi, W. Greiner, Q. Li, H. Liu, W. J. Llope, R. Mattiello, S. Panitkin, I. Sakrejda, R. Snellings, H. Sorge, C. Spieles, H. St?cker, J. Thomas, S. Voloshin, F. Wang, and N. Xu, Phys. Rev. C 60, 031901 (1999).
  • 10H. Kruse, B. V. Jacak, J. J. Molitoris, G. D. Westfall, and H. Stoecker, Phys. Rev. C 31, 1770 (1985).

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部