期刊文献+

临界半线性双调和方程非平凡解的存在性

Existence of nontrivial solutions for critical semilinear biharmonic equations
下载PDF
导出
摘要 在有界光滑区域ΩR^N上研究临界半线性双调和方程Δ~2u=λu+|u|^(q-2)u,λ>0,u∈H_0~1(Ω)∩H^2(Ω)非平凡解的存在性.利用极小极大原理和山路引理,证明方程所对应的泛函存在临界点,从而得到方程至少存在一个非平凡解的结论. The existence of nontrivial solutions for the problem Δ~2u =λu+|u|^(q-2)u,λ0,u H_0~1(Ω)∩ H^2(Ω) is discussed in this paper under the condition that ΩR^N is a bounded smooth domain.Applying the mini-max principle and mountain-pass lemma,a critical point of the corresponding functional of the equation is obtained,indicating the existence of nontrivial weak solutions.
作者 秦志跃
出处 《华中师范大学学报(自然科学版)》 CAS 北大核心 2016年第1期15-20,共6页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金项目(11371160)
关键词 双调和方程 临界SOBOLEV指数 非平凡解 biharmonic equations critical Sobolev exponent nontrivial solutions
  • 相关文献

参考文献6

  • 1PUCCI P, SERRIN J. Critical exponents and critical dimen- sions for polyharmonic operators[J]. J Math Pures Appl,1990, 69:55-83.
  • 2EDMUNDS D E, FORTUNATO D, JANNELLI E. Critical exponents, critical dimensions and the biharmonic operator [J]. Arch Rational Mech Anal, 1990, 112..269-289.
  • 3GAZZOLA F, GRUNAU H C, SQUASSINA M. Existence and nonexistence results for critical growth hiharmonic ellip- tic equations [J]. Calc Vat Partial Differential Equations, 2003, 18:117-143.
  • 4NOUSSAIR E S, SWANSON C A, YANG Jianfu. Critical semilinear biharmonic equations in RN. Proc Roy Soc Edin- burgh Sect A-Math, 1992, 121 : 139-148.
  • 5BREZIS H, LIEB E. A relation between pointwise conver- gence of functions and convergence of functionals[J]. Proc A- met Math Soc, 1983, 88:486-490.
  • 6SWANSON C A. The best Sobolev constant[J]. Appl Anal, 1992, 47:227-239.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部