期刊文献+

面向Kinect运动数据的鲁棒足迹检测 被引量:1

Robust foot plant detection for Kinect-captured motion data
原文传递
导出
摘要 目的 Kinect可实时获取运动数据且较传统的运动捕捉设备采集成本低廉,在运动数据捕捉方面得到了广泛应用。但Kinect获取的运动数据精度较低,现有运动数据处理算法难以适用。方法针对运动数据处理的关键步骤足迹检测问题,提出面向Kinect运动数据的鲁棒足迹检测算法。首先使用自适应的双边滤波算法降低Kinect运动数据中的噪声;其次定义多种脚部运动特征并用于分类,优化分类效果;最后使用支持向量机(SVM)算法训练决策函数并用于足迹检测。结果本文算法应用于多种类型运动数据后,可以有效地减少Kinect运动数据中的噪声,足迹检测的时间性能以及准确性良好,其中足迹检测的准确率比经典的基准线方法提高了10%左右,比K近邻方法提高了8%左右,检测一帧运动足迹的速度为K近邻方法的7倍左右。结论对实验结果的分析证明算法具有良好的鲁棒性、时间性能以及准确率,可广泛应用于运动数据的处理之中。 Objective Kinect can be utilized to capture motion data in real time. Given that its cost is lower than that of tra- ditional motion-capture devices, Kinect is widely used to capture motion data. However, the noise in Kinect-captured mo- tion data makes the quality of motion data relatively unsatisfactory. Thus, previous data-processing methods failed to handle such data well. Method Foot plant detection is a key procedure in motion editing; it detects whether the character's foot is on the ground. A robust foot plant detection algorithm for Kinect-captured motion data is proposed in this study. First, an adaptively bilateral filtering method is proposed to reduce the noise in Kinect-captured motion data. Second, muhiple fea- tures of the motion data are defined and utilized to optimize the effect of foot plant detection. Finally, a decision function is trained with the support vector machine algorithm and applied to foot plant detection. Result After being applied to a data- set that consists of various types of motion, the noise in the Kinect-captured motion data was reduced effectively. The accu- racy of foot plant detection increased by 6% after applying the proposed adaptively bilateral filtering method. Good time performance and high accuracy of foot plant detection were acquired as well. The foot plant detection accuracy of the pro- posed detection algorithm increased by 11% and 8% compared with that of the baseline method and the K nearest-neighbor method, respectively. The time consumed in the detection of the motion data of one frame is a seventh of that of the K nea- rest-neighbor method. Conclusion Experimental results proved the effectiveness and robustness of the proposed foot plant detection algorithm. Thus, this algorithm can be widely utilized in motion data processing.
作者 罗飘 刘晓平
出处 《中国图象图形学报》 CSCD 北大核心 2016年第2期225-234,共10页 Journal of Image and Graphics
基金 国家自然科学基金项目(61370167 61305093) 国家科技支撑计划项目(2012BAJ08B01)~~
关键词 计算机动画 KINECT 运动编辑 足迹检测 支持向量机 computer animation Kinect motion edit foot plant detection support vector machine
  • 相关文献

参考文献21

  • 1Kovar L, Schreiner J, Gleicher M. Footskate cleanup for motion capture editing[C]/The 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New York: ACM, 2002: 97-104. [DOI: 10.1145/545261.545277].
  • 2Yamane K, Ariki Y, Hodgins J. Animating non-humanoid characters with human motion data[C]//The 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Switzerland: Eurographics Association, 2010:169-178.[DOI:10.2312/SCA/SCA10/169-178].
  • 3Guo S, Southern R, Chang J, et al. Adaptive motion synthesis for virtual characters: a survey [J]. The Visual Computer, 2014, 30(12): 1-16. [DOI: 10.1007/s00371-014-0943-4].
  • 4Firouzmanesh A, Cheng I, Basu A. Perceptually guided fast compression of 3-d motion capture data [J]. IEEE Transactions on Multimedia, 2011, 13(4):829-834.[DOI:10.1109/TMM.2011.2129497].
  • 5Ménardais S, Kulpa R, Multon F, et al. Synchronization for dynamic blending of motions[C]/The 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Switzerland: Eurographics Association, 2004: 325-335.[DOI: 10.1145/1028523.1028567].
  • 6Sung M. Automatic Fixing of Foot Skating of Human Motions from Depth Sensor [M]. Multimedia and Ubiquitous Engineering. Berlin:Springer Netherlands, 2013: 405-412.[DOI: 10.1007/978-94-007-6738-6_50].
  • 7Ikemoto L, Arikan O, Forsyth D. Knowing when to put your foot down[C]//Symposium on Interactive 3D Graphics and Games. New York: ACM, 2006: 49-53. [DOI: 10.1145/1778765.1778809].
  • 8Wu X, Kumar V, Quinlan J R, et al. Top 10 algorithms in data mining [J]. Knowledge and Information Systems, 2008, 14(1): 1-37.[DOI: 10.1007/s10115-007-0114-2].
  • 9Nguyen C V, Izadi S, Lovell D. Modeling kinect sensor noise for improved 3d reconstruction and tracking[C]/Proceedings of the 2 nd International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission. Zurich: IEEE,2012:524-530.[DOI:10.1109/3DIMPVT.2012.84].
  • 10Tomasi C, Manduchi R. Bilateral filtering for gray and color images[C]//Proceedings of the bth International Conference on. Bombay:IEEE,1998:839-846.[DOI:10.1109/ICCV.1998.710815].

二级参考文献41

  • 1张春华,刘纪元.第二讲 合成孔径声纳成像及其研究进展[J].物理,2006,35(5):408-413. 被引量:28
  • 2Tomasi C, Manduchi R. Bilateral filtering for gray and color images [ A ]. In: Proceedings of the Sixth International Conference on Computer Vision [ C ], Washington, DC, USA: IEEE Computer Society, 1998: 839-846.
  • 3Overton K J, Weymouth T E. A noise reducing preprocessing algorithm [ A ] . In: Proceedings of IEEE Computer Science Conference on Pattern Recognition and Image Processing [ C ], Chicago, Illinois, USA, 1979: 498-507.
  • 4Pham T Q, Vliet L J. Separable bilateral filtering for fast video preproeessing [ A]. In: Proceedings of IEEE International Conference on Multimedia and Expo [ C ] , Amsterdam, Netherlands, 2005 : 454- 457.
  • 5Lim Y C, Parker S R. FIR filter design over a discrete powers-of-two coefficient space [ J]. IEEE Transactions on Acoustic Speech, Signal Processing, 1983, 31(6): 583-591.
  • 6Lim Y C. Design of discrete-coefficient-value linear phase FIR filters with optimum normalized peak ripple magnitude [ J ]. IEEE Transactions on Circuits and Systems, 1990, 37(12) : 1480-1486.
  • 7Li D, Lim Y C, Lian Y, et al. A polynomial-time algorithm for designing FIR filters with power-of-two eoeffieients [ J ]. IEEE Transactions on Signal Processing, 2002, 50 (8) : 1935-1941.
  • 8Yu J H, Lian Y. Frequency-response masking based filters with the even-length bandedge shaping filter E A ]. In : Proceedings of the 2004 International Symposium on Circuits and Systems ~ C ~ , Vancouver, British Columbia, Canada, 2004: 536-539.
  • 9Gonzalez R C, Woods R E. Digital Image Processing Second Edition ( English Edition ) [ M ] . Beijing : Publishing House of Electronics Industry, 2002.
  • 10Coleman T, Branch M A, Grace A. User's Guide of Optimization Toolbox [ M]. Natiek, MA, USA: The Math Works, 1999.

共引文献118

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部