摘要
[目的/意义]面对网络虚拟世界中的大学生集体行为模式,如何从个体的偏好结构和信念特征进行行为心理基础分析,是网络集体行动预警设计有效性的关键,个体偏好结构理论为提升预警体系有效性提供了心理基础。[方法/过程]在偏好结构理论的指导下,展开大学生网络集体行动模式分析并进行预警体系的设计:解析了网络特征和网络主题通过网民偏好结构对大学生网络集体行动的影响过程;探讨了大学生网络集体行动的组织动员与协调机制;构建了大学生网络集体行动的静态评估系统和动态评估系统,并依据网络底层数据和指标体系生成综合危险度系数进行一定等级告警。[结果/结论]这种基于个体行为偏好基础的预警体系,弥补了网络集体行动预警设计的行为心理基础,将会产生更加有效的预警效果。
[ Purpose/Signifirance ] In view of the collective action patterns of college students in network virtual world, the key for the effective designing of the early warning system for the college students' online collective action lies in analysis of the behavior psychology foundation from the individual's preference structure and the belief characteristics. The preference structure theory provides the psychologi- cal basis for improving the effectiveness of the early warning system. [ Method/Process] Under the framework of preference structure theo- ry, this study analyzes college students' online collective action patterns and designs its early warning system. Firstly, the study analyzes the impact of network characteristics and network topics on online collective action of college students via netizens' preference structure. Secondly, the study discusses the mobilization and coordination mechanism for online collective action of college students. Finally, the study constructs the early warning system of college students' online collective action containing a static evaluation system and a dynamic e- valuation system, and based on the underlying data and index system, a comprehensive risk factor for alarm in a certain level is then gener- ated. [ Result/Conclusion] The early warning system proposed in this study is more effective in effect because of its individual behavior preference foundation, which helps make up the behavior psychology foundation for online collective action.
出处
《情报杂志》
CSSCI
北大核心
2016年第1期134-139,175,共7页
Journal of Intelligence
基金
国家社会科学基金教育学青年项目"大学生网络行为的偏好和信念特征及疏导对策研究"(编号:CIA130179)研究成果之一
关键词
大学生
网络集体行动
偏好结构
预警机制
college students
online collective action
preference structure
early warning system design