期刊文献+

高阶PDE模型中的松弛中值图像去噪方法 被引量:1

A relaxed median image denoising method in high order PDE model
下载PDF
导出
摘要 针对平均曲率极小化模型在去噪过程中产生斑点的问题,提出了一种平均曲率和松弛中值滤波结合的迭代算法。首先,使用平均曲率模型对噪声图像处理,根据局部方差信息,利用阈值确定斑点的位置。其次,利用具一定边界保持性质的松弛中值滤波器消除斑点噪声。最后,为更有效地消除斑点,在每一次随着时间的迭代后都使用松弛中值滤波。对曲线和图像进行去噪仿真实验,结果表明,相对于平均曲率模型,本文算法在客观指标和主观视觉效果上均有更好的去噪效果和更低的时间复杂度。 To remove speckle effect produced by the mean curvature model, we propose an iterative image denosing algorithm, which combines the mean curvature model and the relaxed median filter. Firstly, we denoise the image by the mean curvature model. Then the speckle noise is located using a threshold according to the variance of the image. Finally the relaxed median filter is introduced. To remove the speckle noise more efficiently, the filter is applied at every iteration step. Denoising simulations on curves and images show that the proposed algorithm has better denoising effect in terms of objective indicators and subjective visual effect, as well as lower time complexity in comparison with the mean curvature model.
出处 《计算机工程与科学》 CSCD 北大核心 2016年第2期338-343,共6页 Computer Engineering & Science
基金 国家自然科学基金(11301113 U1404103) 河南省教育厅科技攻关重点项目(14A520029) 河南理工大学博士基金(B2009-41) 河南理工大学青年骨干教师资助计划(09-13)
关键词 图像去噪 偏微分方程 平均曲率 松弛中值滤波器 斑点效应 image denoising partial differential equation mean curvature relaxed median filter speckle effect
  • 相关文献

参考文献5

二级参考文献69

  • 1郭小卫,田铮.基于小波域边缘方向特征的SAR图象噪声抑制方法[J].中国图象图形学报(A辑),2003,8(4):453-458. 被引量:11
  • 2杨琨,曾立波,王殿成.数学形态学腐蚀膨胀运算的快速算法[J].计算机工程与应用,2005,41(34):54-56. 被引量:43
  • 3张红英,彭启琮.全变分自适应图像去噪模型[J].光电工程,2006,33(3):50-53. 被引量:45
  • 4Chan T F,Shen J.Image processing and analysis,variational,PDE, wavelet and stochastic methods[M].Philadelphia:SIAM,2005.
  • 5Aubert G,Kornprobst P.Mathematical problems in image processing:Partial differential equations and the calculus of variations[M]. [S.l.] : Springer, 2002.
  • 6Aubert G,Vese L.A variational method in image reeovery[J].SIAM Journal on Numerical Analysis, 1997,34(5): 1948-1979.
  • 7Rudin L,Osher S,Fatemi E.Nonlinear total variation based noise removal algorithms[J].Physica D, 1992,60: 259-268.
  • 8Tikhonov N,Arsenin V Y.Solutions of Ill-posed problems[M].Washington D C:Winston and Sons,1977.
  • 9Lysaker M,Lundervold A,Tai X C.Noise removal using fourth-order partial differential equations with applications to medical magnetic resonance images in space and time[J].IEEE Transactions on Image Processing,2003,12(12) : 1579-1590.
  • 10You Y L,Kaveh M.Fourth-order partial differential equations for noise removal[J].IEEE Transactions on Image Processing,2000,9 (10) : 1723-1730.

共引文献19

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部