期刊文献+

基于模拟退火算法优化的超分辨率图像重建 被引量:6

Super Resolution Image Reconstruction Based on Simulated Annealing Algorithm
下载PDF
导出
摘要 超分辨率图像重建技术当前面临诸多挑战,为了重建出高质量的图像,本文提出一种基于模拟退火算法优化的超分辨率图像重建方法。首先将图像划分为多个子块,提取归一化亮度和小波变换子带系数,然后采用流形学习算法对图像特征向量进行提取和降维处理,并采用模拟退火算法优化参数K值,最后将高分辨率图像的梯度作为目标梯度域,通过权值矩阵进行超分辨率图像重建,结果表明,本文方法获得了理想的超分辨率图像重建效果,重建效率高,而且视觉效果、客观评价值均要优于其它超分辨率图像重建方法。 Image super-resolution reconstruction technology currently faces with many challenges,in order to reconstruct a high quality image,this paper presents a super-resolution image reconstruction method based on simulated annealing algorithm optimizing,Firstly,the image is divided into multiple sub blocks,in which normalized intensity and coefficients of the wavelet transform coefficients are extracted,and then image feature vector is extracted by manifold learning algorithm,and simulated annealing algorithm is used to optimize the value of K,finally,the gradient of the high resolution image is used as the target gradient domain to realize the super- resolution image reconstruction through weight matrix,The results show that the proposed method is effective and efficient,its visual effect and objective evaluation results are better than other super resolution image reconstruction methods.
作者 任宏德
机构地区 华北科技学院
出处 《激光杂志》 北大核心 2016年第2期38-41,共4页 Laser Journal
基金 中央高校基本科研业务费资助项目(3142011074)
关键词 图像重建 模拟退火算法 超分辨率 视觉效果 Image reconstruction simulated annealing algorithm super resolution image processing
  • 相关文献

参考文献16

  • 1Nasonov A V, Krylov A S. Fast super- resolution using weighted median filtering [ C ]. lstanbul : Proceedings of the 20th International Conference on Pattern Recognition ( ICPR). IEEE ,2010.
  • 2Yuan Q Q, Zhang L P, Shen H F, Li P X. Adaptive multiple -frame image super-resolution based on U-curve [ J ]. IEEE Transactions on Image Processing, 2010 ~ 19 ( 12 ) : 3157 - 3170.
  • 3Capel D, Zisserman A. Computer vision applied to super- resolution[ J ]. IEEE Signal Processing Magazine, 2003,20 (3) :75-86.
  • 4Van Ouwerkerk J D. Image super-resolution survey[ J]. Im- age and Vision Computing, 2006,24 ( 10 ) : 1039-1052.
  • 5李桂来.Contourlet变换在MRI图像重建算法中的应用[J].激光杂志,2015,36(1):49-52. 被引量:7
  • 6杨欣,费树岷,周大可.基于MAP的自适应图像配准及超分辨率重建[J].仪器仪表学报,2011,32(8):1771-1775. 被引量:19
  • 7Park S C, Park M K, Kang M G. Super-resolution image re- construction : A technical overview[ J]. IEEE Signal Process- ing Magazine ,2003,20 ( 3 ) :21-36.
  • 8Harris J L. Diffraction and resolving power [ J ]. Journal of the Optical Society of America, 1964,54 (7) :931-936.
  • 9Ouwerkerk J D. Image super-resolution survey [ J ]. Image and Vision Computing,2006,24(10) :1039-1052.
  • 10肖宿,韩国强,沃焱.数字图像超分辨率重建技术综述[J].计算机科学,2009,36(12):8-13. 被引量:12

二级参考文献134

  • 1张晓玲,沈兰荪.超分辨率图像复原技术的研究进展[J].测控技术,2005,24(5):1-5. 被引量:20
  • 2陈强,戴奇燕,夏德深.基于MTF理论的遥感图像复原[J].中国图象图形学报,2006,11(9):1299-1305. 被引量:25
  • 3崔之祜,江春,陈丽鑫.数字视频处理[M].北京:电子工业出版社,1998.
  • 4S Borman, R Stevenson. Spatial Resolution Enhancement of LowResolution Image Sequences: A Comprehensive Review with Directions for Future Research, Laboratory for Image and Signal Analysis (LISA)[D]. University of Notre Dame, 1998.
  • 5S C Park, M K Park, M G Kang. Super-resolution image reeonstruetion: A technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3): 21--36.
  • 6M Elad, A Feuer. Restoration of a single superresolution image from several blurred, noisy, and undersarnpled measured images [J ]. IEEE Transactions on Image Processing, 1997, 6 ( 12 ) : 1646--1658.
  • 7R Y Tsai, T S Huang. Multi-frame image restoration and registration Advances in Computer Vision and Image Processing[J]. 1984, 1(2) :317--339.
  • 8M V Joshi, S Chandhuri, R Pannganti. Super-resolution imaging: Use of zoom as a cue, Image and Vision Computing[J]. 2004, 22 (14) : 1185--1196.
  • 9S Chaudhuri, J Manjunath. Motion-Free Super-Resolution [ M ]. Springer-Verlag New York, USA, 2005.
  • 10A N Rajagopalan, V Phani Kiran. Motion-free superresolution and the role of relative blur[J]. Journal of the Optical Society of AmericaA: Optics and Image Science, and Vision, 2003, 20(11): 2022--2032.

共引文献65

同被引文献31

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部