期刊文献+

医学图像病变区域的识别与仿真分析

Identification and Simulation Analysis of Medical Image Lesion Area
下载PDF
导出
摘要 医学图像病变区识别对于提高疾病诊断准确性具有重要的作用,为了提高医学图像病变区域识别的正确率,提出了一种最小二乘支持向量机的医学图像病变区域识别方法。该方法将病变区域识别看作一个模式识别问题,利用灰度共生矩阵提取医学图像的特征,然后构建最小二乘支持向量机学习的数据,并利用最小二乘支持向量机良好的分类性能,构建医学图像病变区域分类器,实现病变区域快速识别,最后胶囊内窥镜图像为例分析其性能。结果表明,最小二乘支持向量机提高了医学图像病变区域的识别率,具有较高的实际应用价值,而且识别性能优于其它医学图像病变区域识别方法。 Medical image lesion area recognition is important to improve the accuracy of disease diagnosis,a new method for medical image lesion area recognition based on least squares support vector machine is proposed to improve the diagnostic accuracy of the disease.image lesion area recognition is considered as a pattern recognition problem,and the features of medical images are extracted by gray level co-occurrence matrix,and then data of least squares support vector machine learning is obtained and least squares support vector machine is used to build medical image lesion area classifier to achieve rapid identification of disease area base on its classification performance,finally,the performance of capsule endoscope image is analyzed as example.The results show that the least squares support vector machine can improve the recognition rate of medical image lesion area,has high application value,and the recognition performance is superior to other medical image recognition method.
作者 沈博渊 李军
出处 《激光杂志》 北大核心 2016年第2期54-56,共3页 Laser Journal
基金 苏州市科技计划项目(SYS201448)
关键词 医学图像 病变区域 边缘检测 感兴趣区域 Medical image lesion area edge detection region of interest
  • 相关文献

参考文献16

  • 1Kekre H B, Thepade S, Sanas S. Improving performance of multileveled BTC based CBIR using sundry color spaces [ J ]. International Journal of Image Processing, 2010,4 ( 6 ) : 620-630.
  • 2Zhang B C, Gao Y S, Zhao S Q, J z Liu. Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor[ J ]. IEEE Transactions on Image Processing,2010,19 ( 2 ) :533-544.
  • 3Li Bao Pu, Meng Max. Computer-based detection of bleed- ing and ulcer in wireless capsule endoscope images by chro- maticity moments[J].Computers in Biology and Medicine, 2009,22(3 ) : 141-147.
  • 4Lehmann T M, Gonner C, Spitzer K. Interpolation methods in medieal image processing [ J ]. Medical Imaging, IEEE Transactions, 1999,18 ( 11 ) : 1049-1075.K.
  • 5傅伟,万洪晓,熊平.基于小波软阈值滤波的医学图像去噪[J].中国医学物理学杂志,2009,26(1):982-984. 被引量:7
  • 6张利红,梁英波,支联合,李向东.基于多结构多尺度形态学梯度的医学图像边缘检测[J].激光杂志,2012,33(3):31-32. 被引量:17
  • 7Niranjan D,Kite T D, Geisler W S, et al. Image quality as- sessment based on a degradation model [ J 1- IEEE Transac- tions on Image Processing,2000,9(4) :636-650.
  • 8宁旭,马显光,李晓寒,蒋洪.区域生长联合边缘分析的医学彩色图像分割研究[J].激光杂志,2007,28(2):86-86. 被引量:3
  • 9Dun Miao, Donghai Huo, Wilson D L. Quantitative image quality evaluation of MR images using perceptual difference models [ J ]. Medical Physics ,2008,38 ( 6 ) :2541-2552.
  • 10王浩军,郑崇勋,闫相国,张新宇.彩色血液细胞图像的自动分割方法研究[J].生物医学工程学杂志,2002,19(2):251-255. 被引量:8

二级参考文献60

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部