期刊文献+

面向移动商务餐饮推荐的情境语义建模与规则推理 被引量:7

Contextual Semantics Modeling and Rule-based Reasoning for Mobile Business Catering Recommendation
下载PDF
导出
摘要 随着智能移动终端和普适计算技术的发展,移动信息推荐已成为研究热点。由于移动推荐具有情境敏感性,使得情境语义模型的构建和使用成为有效实现移动推荐的关键。文章以移动商务餐饮推荐服务为背景,探索面向移动推荐的情境语义建模和推理机制,设计构建了包含上层本体和领域本体的两层情境语义本体模型,并研究了基于情境语义的移动推荐系统,该系统能依据情境本体中的概念和语义关系,自动生成推荐规则,并通过规则推理产生推荐结果。通过系统原型的开发和模拟运行实验,证明本文提出的方法能有效提高移动信息推荐的准确性。 With the development of intelligent mobile terminal and pervasive computing technology,mobile information recommendation has become research focus.Due to the context sensitive of mobile recommendation,the construction and application of contextual semantics modeling plays a key role in the effective implementation of mobile recommendation.Based on the background of mobile business catering recommendation service,this paper explores the contextual semantics modeling and reasoning mechanism for mobile recommendation.Then,the paper designs and constructs the contextual semantics ontology model,which includes upper ontology and domain ontology.The paper researches on the mobile recommendation system based on contextual semantics,which can automatically generate recommendation rules according to the concepts and semantic relations in the contextual ontology,and produce recommendation results by rule-based reasoning.The experiment of the system development and simulation running proves that the proposed method in the paper can effectively improve the precision of mobile information recommendation.
出处 《情报理论与实践》 CSSCI 北大核心 2016年第2期82-88,共7页 Information Studies:Theory & Application
基金 国家自然科学基金面上项目"基于动态数据挖掘的物流信息智能分析研究"(项目编号:71373197) 国家社会科学基金青年项目"移动网络环境下情景敏感的个性化知识推荐机制研究"(项目编号:11CTQ020) 广东省自然科学基金项目"移动泛在网络环境下基于情境语义的O2O实时推荐机制研究"(项目编号:2015A030313499)的成果
关键词 移动推荐 情境 语义建模 规则推理 情境本体 mobile recommendation context semantics modeling rule-based reasoning contextual ontology
  • 相关文献

参考文献13

  • 1贺桂和,曾奕棠.基于情境感知的电子商务平台个性化推荐模型研究[J].情报理论与实践,2013,36(6):81-84. 被引量:16
  • 2RICCI F. Mobile recommender systems [ J ]. International Journal of Information Technology and Tourism, 2011, 12 ( 3 ) : 205-231.
  • 3胡慕海,蔡淑琴,张宇,谭婷婷.情境化信息推荐机制的研究[J].情报学报,2011,30(10):1053-1064. 被引量:21
  • 4STUDER R, BENJAMINS V R, FENSEL D. Knowledge engi-neefing: principles and methods [J]. Data and Knowledge Engineering, 1998, 25 (1-2): 161-197.
  • 5KRUMMENACHER R, LAUSEN H, STRANG T, et al. An- alyzing the modeling of context with ontologies [ C ] // DARGIE D, SPRINGER T, KLAUSER B. Workshop Proceed- ings of the 1 st International Workshop on Context-Awareness for Self-Managing Systems. Toronto: VDE Verlag, 2007 : 11-22.
  • 6STRANG T, LINNHOFF-POPIEN C. A context modeling sur- vey [EB/OL]. [2014-06-08]. http: //elib. dlr. de/7444/ 1/Ubicomp2004ContextWSCameraReadyVersion. pdf.
  • 7OZTURK P, AAMODT A. Towards a model of context for case- based diagnostic problem solving [ EB/OL]. [ 2014-06-08 ]. http: //eiteseerx. ist. psu. edu/viewdoe/download? doi = 10. 1.1.52. 7386&rep = repl &type = pdf.
  • 8STRANG T, LINNHOFF-POPIEN C, FRANK K. CoOL: a context ontology language to enable contextual interoperability [ C] // Proceedings, LNCS 2893. Heidelberg: Springer-Vet- lag, 2003: 236-247.
  • 9CHEN H, FININ T, JOSHI A. An ontology for context-aware pervasive computing environments [ J ]. The Knowledge Engi- neeringReview, 2003, 18 (3): 197-207.
  • 10CHEN H, FINNIN T, JOSHI A. The SOUPA ontology for per- vasive computing [ C] //TAMMA V, CRANEFIELD S, FI- NIN T W, et al. Ontologies for Agents: Theory and Experi- ences. Berlin: Birkhauser Basel, 2005: 233-258.

二级参考文献65

  • 1万亚红,黄樟钦,陈旭辉,霍囝囝.基于主动推理的情境感知系统框架[J].计算机工程,2004,30(12):8-9. 被引量:18
  • 2周国韬,张林,付桂芳.初中生自我调节学习策略的运用与学业成就关系的研究[J].心理科学,2001,24(5):612-613. 被引量:63
  • 3吴丽花,刘鲁.个性化推荐系统用户建模技术综述[J].情报学报,2006,25(1):55-62. 被引量:104
  • 4Panniello U, Tuzhilin A. Comparing Pre-filtering and Post-filtering Approach in a Collaborative Contextual RecommendatioinSystem [ M ]. Berlin: Springer, 2009: 348-359.
  • 5Sankaranarayanan R, Adomavicius G. Incorporating cont- extual information in Recommendatioinsystems using a multidimensional approach [ J ]. ACM Transactions on Information Systems, 2005,11 ( 23 ) : 103-145.
  • 6Adomavicius G, Tuzhilin A. Toward the Next Generat-ion of RecommendatioinSystems: A Survey of the State-of- the-Art and Possible Extensions [ J]. IEEE Transactions on Knowledge And Data Engineering, 2005, 17 ( 6 ) : 734 -749.
  • 7Chedrawy Z, Sibte S, Abidi R. An Adaptive Personalized Recommendation Strategy Featuring Context Sensitive Content Adaptation [ C ]//Proceedings of the Intern- ational Conference on Adaptive Hypermedia and Adaptive Web-Based Systems ,2006:61-70.
  • 8Park H S, Yoo J O, et al. A context-aware music reco- mmendation system using fuzzy bayesian networks with utility theory [ C ]. International Conference on Fuzzy Sytems and Knowledge Discovery,2006:970-979.
  • 9Baltrunas L, Ricci F. Context-based splitting of item ratings in collaborative filtering[ C ]//Proceedings of the third ACM conference on Recommendatioinsystems table of contents. New York ,2009:245-248.
  • 10Chen A. Context-aware collaborative ? hering system: Predicting the user's preference in the ubiquitous computing environment [ C ]. First International Workshop on Location-and Context-Awareness, 2007: 244-253.

共引文献35

同被引文献76

  • 1向阳,王敏,马强.基于Jena的本体构建方法研究[J].计算机工程,2007,33(14):59-61. 被引量:33
  • 2刘倩.基于客户关系发展阶段的推荐系统特性需求分析[D].武汉:华中科技大学,2011.
  • 3王全胜,郑称德,周耿.B2C网站设计因素与初始信任关系的实证研究[J].管理学报,2009,6(4):495—501.
  • 4Ricci,F.,Rokach,L.,Shapira,B.,et al.Recommender Systems Handbook[M].New York:Springer,2011:1-35.
  • 5De Lone,W.H.,Mc Lean,E.R.The De Lone and Mc Lean Model of Information Systems Success:A Ten-Year Update[J].Journal of Management Information Systems,2003,19(4):9-30.
  • 6Casaló,L.,Flavián,C.,Guinalíu,M.The Role of Perceived Usability,Reputation,Satisfaction and Consumer Familiarity on the Website Loyalty Formation Process[J].Computers in Human behavior,2008,24(2):325-345.
  • 7Wang,W.,Benbasat,I.Trust in and Adoption of Online Recommendation Agents[J].Journal of the Association for Information Systems,2005,6(3):72-101.
  • 8Parasuraman,A.,Zeithaml V.A.,Malhotra,A.E-SQUAL:A Multiple-Item Scale for Assessing Electronic Service Quality[J].Journal of Service Research,2005,7(3):213-233.
  • 9Xiao,B.,Benbasat,I.E-Commerce Product Recommendation Agents:Use,Characteristics,and Impact[J].MIS Quarterly,2007,31(1):137-209.
  • 10Cai,H.,Chen,Y.,Fang,H.Observational Learning:Evidence from a Randomized Natural Field Experiment[J].American Economic Review,2009,99(3):846-882.

引证文献7

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部