期刊文献+

复空间形式中具有平行平均曲率向量的全实伪脐子流形

Totally Real Pseudo-Umbilical Submanifolds of a Complex Space with a Parallel Mean Curvature Vector
下载PDF
导出
摘要 讨论了复空间形式中具有平行平均曲率向量的全实伪脐子流形Mn的一些性质.采用活动标架法,得到了Mn为全脐子流形的一些内蕴刚性定理. Let Mn be a compact totally real pseudo-umbilical submanifold in a complex space form.In this paper,we study the position of the parallel umbilical normal vector field of in the normal bundle.With the method of moving frames,we obtain some intrinsic rigidity theorems such that becomes totally umbilical submanifold.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第2期72-77,共6页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金项目(11471188)
关键词 复空间形式 全实伪脐子流形 全脐子流形 平行平均曲率向量 complex space form totally real pseudo-umbilical submanifold totally umbilical submanifold parallel mean curvature vector
  • 相关文献

参考文献5

二级参考文献22

  • 1CHEN B Y, OGIUE K. On totally real submanifolds [ J ]. Transactions of the American Mathematical Society, 1974,193 : 257- 266.
  • 2CHERN S S, CARMO M D, KOBYASHI S. Minimal submanifolds of a sphere with second fundamental form of constant length[ M ]//FELIX E B. Functional Analysis and Related Fields. New York: Springer, 1970:393 - 408.
  • 3LI A M,LI J M. An intrinsic rigidity theorem for minimal submanifolds in a sphere[J]. Arch Math, 1992,58: 582 - 594.
  • 4YAU S T. Submanifolds with constant mean curvature Ⅰ[J]. Amer J Math,1974,96(2) :346 -366.
  • 5YAU S T. Submanifolds with constant mean curvature Ⅱ[ J]. Amer J Math,1975,97 (1) :76 -100.
  • 6CHEN Bangyen, OGIUE K. On totally teal submmuifolds [J]. Trans. Amer. Math. Soc., 1974, 193: 257-266.
  • 7LUDDEN G D, OKUMURA M, YANO K. A totally real surface in CP2 that is not totally geodesic [J]. Proc. Amer. Math. Soc., 1975, 53(1): 186-190.
  • 8DU Hongquan. Totally reaJ pseudo-umbilical submanifolds in a complex projective space [J]. J. Hangzhou Univ. Nat. Sci. Ed., 1998, 25:8-14.
  • 9CHERN S S, DO C M, KOBAYASHI S. Minimal Submanifolds of a Sphere with Second Fundamental form of Constant Length [M]. Berlin: Spring-Verlag, 1970, 59-75.
  • 10LI Anmin, LI Jimin. An intrinsic rigidity theorem for minimal submanifolds in a sphere [J]. Arch. Math. (Basel), 1992, 58(6): 582-594.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部