期刊文献+

基于稳健主成分分析与核稀疏表示的人脸识别 被引量:6

Face Recognition Based on Robust Principal Component Analysis and Kernel Sparse Representation
下载PDF
导出
摘要 针对现有人脸识别方法难以有效抑制噪声和误差干扰(如光照、遮挡和表情等)的问题,提出一种基于稳健主成分分析的核稀疏表示分类算法。利用稳健主成分分析将各类训练样本转化为低秩矩阵和误差矩阵之和,并运用这2个矩阵构成稀疏表示的冗余字典。将核稀疏表示问题通过矩阵变换转化为常规的稀疏表示问题,采用正交匹配追踪算法求解该问题得到稀疏表示系数。通过稀疏表示系数计算每个类的重构误差,从而实现人脸识别。实验结果表明,与SRC,ESRC等算法相比,该算法具有较高的人脸识别率,且对噪声和误差干扰有较强的适应能力。 Aiming at the problems that the existing face recognition methods are hard to efficiently overcome the effect of noise and error disturbance( such as illumination,occlusion,and face expression). Kernel sparse representation classification based on Robust Principal Component Analysis( RPCA) is proposed for face recognition. The training sample matrix of each class is decomposed into a low-rank matrix and an error matrix by RPCA algorithm,and the redundant dictionary is constructed by these two matrices. Kernel sparse representation problem is converted to normal sparse representation problem by matrix transformation,and Orthogonal Matching Pursuit( OMP) technology is used to solve sparse representation problem to obtain sparse representation coefficients. The reconstruction error associated with the each class can be calculated by the sparse coefficients to achieve classification of the test sample. Experimental results show that,compared with Sparse Representation-based Classification( SRC),ESRC( Extended SRC) algorithms,the proposed algorithm has a higher recognition rate and it is robust to noise and error disturbance.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第2期200-205,共6页 Computer Engineering
基金 湖南省软科学研究计划基金资助重点项目"云计算视阈下湖南教育信息化资源体系构建的战略对策研究"(2013ZK2014)
关键词 稳健主成分分析 核稀疏表示 人脸识别 正交匹配追踪 低秩矩阵 冗余字典 Robust Principal Component Analysis(RPCA) kernel sparse representation face recognition Orthogonal Matching Pursuit(OMP) low-rank matrix redundant dictionary
  • 相关文献

参考文献24

  • 1Bartlett M,Movellan J,Sejnowsk T.Face Recognition by Independent Component Analysis[J].IEEE Transactions on Neural Networks,2002,13(11):1450-1464.
  • 2Turk M,Pentland A.Eigenfaces for Recognition[J].Journal of Cognitive Neuroscience,1991,3(2):71-86.
  • 3Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfaces Vs Fisherfaces:Recognition Using Class Specific Linear Projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(3):711-720.
  • 4He X,Yan S,Hu Y.Face Recognition Using Laplaeianfaces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):328-340.
  • 5Elad M.Sparse and Redundant Representation Modelingwhat Next[J].IEEE Signal Processing Letters,2012,19(1):922-928.
  • 6Elad M.Sparse and Redundant Representations:From Theory to Applications in Signal and Image Processing[M].Berlin,Germany:Springer,2010:236-348.
  • 7Patel V M,Chellappa R.Sparse Representations and Compressive Sensing for Imaging and Vision[M].Berlin,Germany:Springer,2013:254-266.
  • 8Wright J,Yang A Y,Ganesh A,et al.Robust Face Recognition via Sparse Representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
  • 9Deng W H,Hu J,Guo J.Extended SRC:Under Sampled Face Recognition via Intra-class Variant Dictionary[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(9):1864-1870.
  • 10Zhang L,Zhou W,Chang P.Kernel Sparse Representation-based Classifier[J].IEEE Transactions on Signal Processing,2012,60(4):1684-1694.

二级参考文献43

  • 1李武军,王崇骏,张炜,陈世福.人脸识别研究综述[J].模式识别与人工智能,2006,19(1):58-66. 被引量:107
  • 2TURK M,PENTLAND A.Eigenfaces for recognition [J].Journal of Cognitive Neuroscience,1991,3(1):71-86.
  • 3ETEMAD K,CHELLAPPA R.Discriminant analysis for recognition of human face images [J].Journal of the Optical Society of America,1997,14(1):1724-1733.
  • 4HE X,YAN S,HU Y,et al.Face recognition using Laplacianfaces [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):328-340.
  • 5WISKOTT L,FELLOUS J M,KRUGER N,et al.Face recognition by elastic bunch graph matching [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):775-779.
  • 6AHONEN T,HADID A,PIETIKAINEN M.Face recognition with local binary patterns [C]// Proceedings of the 8th European Conference on Computer Vision,LNCS 3021.Berlin:Springer,2004:469-481.
  • 7ZHANG B,SHAN S,CHEN X,et al.Histogram of Gabor Phase Patterns(HGPP):a novel object representation approach for face recognition [J].IEEE Transactions on Image Processing,2007,16(1):57-68.
  • 8LEE K C,HO J,KRIEGMAN D J.Acquiring linear subspaces for face recognition under variable lighting [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(5):684-698.
  • 9WRIGHT J,YANG A Y,GANESH A,et al.Robust face recognition via sparse representation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
  • 10YANG J,WRIGHT J,HUANG T S,et al.Image super-resolution via sparse representation [J].IEEE Transactions on Image Processing,2010,19(11):2861-2873.

共引文献38

同被引文献44

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部