期刊文献+

结合Tsallis熵与Jensen距离的视频关键帧抽取方法 被引量:1

Video Key Frame Extraction Method Combined with Tsallis Entropy and Jensen Distance
下载PDF
导出
摘要 为快速有效地表征视频内容,提出一种视频关键帧抽取方法。结合Tsallis熵和Jensen距离计算相邻视频帧间差距,将视频分割为镜头,并根据镜头内视觉内容变化的多少将其分割为子镜头,最终抽取关键帧。同时提出视频帧间的距离度量标准,用于自适应地选取最优Tsallis熵指数。实验测试结果表明,该方法简单高效,对物体运体有较好的鉴别能力。 In order to summarize the main content of a video sequence quickly and effectively,this paper proposes a new method for extracting video key frames. The proposed technique makes use of Jensen-Tsallis distance to estimate the frame-by-frame distance betw een consecutive video images,to segment a video into shot,and into subshot either with or without large change of the video content. Video key frames are selected based on the subshot. It also proposes a measure for the difference between video frames to adaptively set an optimal index used for Tsallis entropy. Experimental result shows that the novel method is simple yet effective,and has better ability to identify the moving objects.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第2期278-282,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61471261 61179067 U1333110)
关键词 关键帧抽取 Jensen-Tsallis距离 信息熵 熵指数 镜头分割 key frame extraction Jensen-Tsallis distance information entropy entropy index shot segmentation
  • 相关文献

参考文献15

  • 1Truong B T,Venkatesh S.Video Abstraction:A Systematic Review and Classification[J].ACM Transactions on Multimedia Computing,Communications,and Applications,2007,3(1).
  • 2Money A G,Agius H.Video Summarization:A Conceptual Framework and Survey of the State of the Art[J].Journal of Visual Communication and Image Representation,2008,19(2):121-143.
  • 3丁洪丽,陈怀新.基于镜头内容变化率的关键帧提取算法[J].计算机工程,2009,35(13):225-227. 被引量:7
  • 4Mentzelopoulos M,Psarrou A.Key-frame Extraction Algorithm Using Entropy Difference[C]//Proceedings of the 6th ACM SIGMM International Workshop on Multimedia Information Retrieval.New York,USA:ACM Press,2004:39-45.
  • 5Cernekova Z,Pitas I,Nikou C.Information Theory-based Shot Cut/Fade Detection and Video Summariza-tion[J].IEEE Transactions on Circuits and Systems for Video Technology,2006,16(1):82-91.
  • 6Omidyeganeh M,Ghaemmaghami S,Shirmohammadi S.Video Keyframe Analysis Using a Segment-based Statistical Metric in a Visually Sensitive Parametric Space[J].IEEE Transactions on Image Processing,2011,20(10):2730-2737.
  • 7Janvier B,Bruno E,Pun T,et al.Information-theoretic Temporal Segmentation of Video and Applications:Multiscale Keyframes Selection and Shot Boundaries Detection[J].Multimedia Tools and Applications,2006,30(3):273-288.
  • 8He Yun,Hamza A B,Krim H.A Generalized Divergence Measure for Robust Image Registration[J].IEEE Transactions on Signal Processing,2003,51(5):1211-1220.
  • 9Xu Qing,Wang Pengcheng,Long Bin,et al.Selection and3D Visualization of Video Key Frames[C]//Proceedings of IEEE International Conference on Systems Man and Cybernetics.Washington D.C.,USA:IEEE Press,2010:52-59.
  • 10Lienhart R,Peiffer S,Effelsberg W.Video Abstracting[J].Communications of the ACM,1997,40(12):54-62.

二级参考文献5

  • 1Liu Tianming,Zhang Hongjiang,Qi Feihu.A Novel Video Key-frame-extraction Algorithm Based on Perceived Motion Energy Model[J].IEEE Transactions on Circuits and Systems for Video Technology,2003,13(10):1006-1013.
  • 2Zhang Hongjiang,Wu Jianhua.Zhong Di,et al.Integrated System for Content-based Video Retrieval and Browsing[J].Pattern Recognition,1997,30(4):643-658.
  • 3Hanjalic A,Zhang Hongjiang.An Integrated Scheme for Automated Video Abstraction Based on Unsupervised Cluster Validity Analysis[J].IEEE Transactions on Circuits and Systems for Video Technology,1999,9(8):1280-1289.
  • 4丁洪丽,陈怀新.基于累积直方图的视频镜头边界检测方法[J].电讯技术,2008,48(3):65-69. 被引量:7
  • 5蔡波,周洞汝.基于镜头关键帧集的视频场景聚类的研究[J].计算机工程与应用,2003,39(28):32-35. 被引量:5

共引文献6

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部