期刊文献+

基于改进多尺度特征估计的行人检测算法

Pedestrian Detection Algorithm Based on Improved Multi-scale Feature Approximated
下载PDF
导出
摘要 多尺度特征在行人检测中广泛应用,但计算效率较低,而多尺度特征估计算法不仅能够确保行人检测效率,还能使行人检测精准度达到较好的水平。文中提出了一种改进的多尺度特征估计方案,根据自然图像像素的对比度具有尺度不变性的特点,对部分样本在较小的尺度空间内用最小二乘拟合方法拟合出估计函数,用于其它样本多尺度特征的估计。实验结果表明,该方案能够在保证行人检测效率的前提下,进一步的提高行人检测精准度。 Multi-scale feature is widely used in pedestrian detection,but the efficiency is lower.The algorithm of multiscale feature approximated can guarantee the efficiency and the accuracy.An improved method of approximating multi-scale feature is presented,according to the scale-invariant of the pixel's contrast of natural image,the least squares fit is used to approximate the function in small range of scales for sub-sample,which is used to approximate multi-scale feature of other samples.The experiment results show that this method can improve the accuracy of pedestrian detection without sacrificing detection efficiency.
作者 李立 张建伟
出处 《计算机与数字工程》 2016年第1期123-127,140,共6页 Computer & Digital Engineering
基金 国家"863"计划项目(编号:2013AA013902)资助
关键词 行人检测 自然图像统计 最小二乘拟合 pedestrian detection natural image statistics least square fit
  • 相关文献

参考文献19

  • 1苏松志,李绍滋,陈淑媛,蔡国榕,吴云东.行人检测技术综述[J].电子学报,2012,40(4):814-820. 被引量:159
  • 2贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 3许言午,曹先彬,乔红.行人检测系统研究新进展及关键技术展望[J].电子学报,2008,36(5):962-968. 被引量:36
  • 4张春凤,宋加涛,王万良.行人检测技术研究综述[J].电视技术,2014,38(3):157-162. 被引量:28
  • 5Dollar P, Wojek C, Schiele B, et al. Pedestrian Detection: An Evaluation Of The State of The Art[J]. Pattern Analysis & Machine Intelligence IEEE Transactions on, 2012,34(4) ; 743-761.
  • 6Geronimo D. Lopez A M, Sappa A D, et al. Survey of Pedestrian Detection for Advanced Driver Assistance Systems[J]. Pattern Analysis & Machine Intelligence IEEE Transactions on, 2009,32(7) ; 1239-1258.
  • 7Enzweiler M. Monocular pedestrian detection: survey and experiments[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2009,31 (12) : 2179-2195.
  • 8P Viola, M J Jones. Snow sing patterns of motion and D. Detecting pedestrians uappearance[J]. Proceedings of Ninth IEEE International Conference on the Comput er Vision,2003,63(2) : 153-161.
  • 9Dalal N, Triggs B. Histograms of oriented gradients for human detection [J]. Proceedings/CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005,1 (12) : 886-893.
  • 10Felzenszwalb P, Mcallester D, Ramanan D. A discriminatively trained, multiscale, deformable part model[J]. IEEE Conference on Computer Vision Pattern Recognition, 2008 : 1-8.

二级参考文献192

  • 1郭烈,王荣本,顾柏园,余天洪.世界智能车辆行人检测技术综述[J].公路交通科技,2005,22(11):133-137. 被引量:18
  • 2贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 3杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 4Geronimo D, Lopez A, Sappa A, et al. Survey of pedestrian de- tection for advanced driver assistance systems[ J]. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 2010, 32 ( 7 ) : 1239- 1258.
  • 5Dollfr P,Wojek C,Schiele B,et al. Pedestrian detection:an e- valuation of the state of the art.IEEE, Trans. on Pattern Analysis and Machine InteUigence,2011,99:1 - 20.
  • 6Aggarwal J, Ryoo M. Human activity analysis: a review[J]. ACM Computing Surveys,2011,43(3),16:1-47.
  • 7Reilly V, Solmaz B, and Shah M. Geometric constraints for hu- man detection in aerial hnagery[ A] .In Proc. ECCV[C] ,2010.
  • 8Andfiluka M, Schnitzspan P, Meyer J, et al. Vision based victim detection from unmanned aerial vehicles [ A ]. In Proc. IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS) [ C]. Talpei, Taiwan, 2010.
  • 9Dollar P, Belongie S, Pemna P. The fastest pedeslrian detector in the west[A]. In Proc. BMVC[C] ,2010.
  • 10Enzweiler M, Gavrila D. Monocular pedestrian detection: sur- vey and experiments[ J]. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 2009,31 (12) :2179 - 2195.

共引文献257

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部