期刊文献+

一种裸露土壤湿度反演方法 被引量:2

Inversion of bare soil moisture based on least squares support vector machine
原文传递
导出
摘要 针对目前土壤湿度反演方法研究较少且缺少实时性的现状,该文提出一种土壤湿度反演方法——最小二乘支持向量机技术。以积分方程模型为正向算法,数值模拟不同雷达参数(频率、入射角及极化)下后向散射系数随土壤含水量和地表粗糙度的变化情况。经过数据敏感性分析,选取C-波段和X-波段、小入射角下的同极化后向散射系数作为支持向量回归的训练样本信息;经过适当的训练,利用支持向量回归技术对土壤含水量进行了反演研究;并考虑通过多频率、多极化、多入射角数据的组合,消除地表粗糙度的影响,提高反演精度。模拟结果表明,该方法反演土壤湿度具有较高的精度和较好的实时性;同时,与人工神经网络方法的结果比较,证明了该方法的有效性,为土壤湿度的反演研究提供了一种方法。 According to the fact that there is no enough approach and real-time of soil moisture inversion,an inversion method for bare soil moisture was presented by using least squares support vector machine(LS-SVM)technique.Based on the integral equation model(IEM),the backscatter coefficient with the change of soil moisture content and surface roughness were numerical simulated in different radar parameters(frequency,incidence angle and polarization).After data sensitivity analysis,backscattering coefficient of C-band and X-band,with small incidence angle were selected as the support vector regression training sample information.After appropriate training,least squares support vector regression techniques was adopted to provide estimation of soil moisture under different inversion scheme.In order to eliminate the influence of surface roughness and improve the inversion accuracy,the combination of multiple frequency,multi-polarization,and incident angle data were considered.The results of simulation indicated that the approach could inverse soil moisture with higher accuracy and better real-time.The effectiveness of proposed method was proved to be useful for building soil moisture inversion research through comparing with the results of the artificial neural network method.
出处 《测绘科学》 CSCD 北大核心 2016年第2期11-14,共4页 Science of Surveying and Mapping
基金 国家自然科学基金项目(61179025) 湖北省教育厅自然科学重点项目(D20111201)
关键词 积分方程模型 土壤湿度反演 最小二乘支持向量机 人工神经网络 integral equation model inversion of soil moisture least squares support vector machine artificial neural network
  • 相关文献

参考文献16

  • 1DUBOIS P C,ZYL J J,ENGMAN T.Measuring soil moisture with imaging radar[C]//IEEE Transaction on Geoscience and Remote Sensing,1995,33(6):915-926.
  • 2OH Y,SARABANDI K,ULABY F T.An empirical model and inversion technique for radar scattering from bare soil surface[C]//IEEE Transaction on Geoscience and Remote Sensing,1992,30(2):370-382.
  • 3BINDISH R,BARROS A P.Multifrequency soil moisture inversion from SAR measurements with the use of IEM[J].Remote Sens.Environ.,2000,71(1):67-88.
  • 4RAO K S,RAJU S,WANG J R.Estimation of soil moisture and surface roughness parameters from backscattering coefficients[C]//IEEE Transaction on Geoscience and Remote Sensing,1993,31(31):1094-1099.
  • 5王悦泉,金亚秋.陆地表面粗糙度和土壤湿度多维参数同时反演的遗传算法[J].遥感学报,2000,4(2):90-94. 被引量:6
  • 6庞自振,廖静娟.基于遗传算法和雷达后向散射模型的地表参数反演研究[J].遥感技术与应用,2008,23(2):130-141. 被引量:6
  • 7NOTARNICOLA C,ANGIULLI M,POSA F.Soil moisture retrieval from remotely sensed data:neural network approach versua bayesian method[C]//IEEE Transaction on Geoscience and Remote Sensing,2008,46(2):547-557.
  • 8VAPNIK V.Statistical learning theory[M].New York:Wiley,1998.
  • 9CRISTIANINI N,TAYLOR J S.An introduction to support vector machine[M].U.K.:Cambridge Univ.Press,2000.
  • 10DREZET P M L,HARRISON R F.Support vector machines for system identification[C]//Control’98,UKACC International Conference,1998(1):688-692.

二级参考文献43

  • 1胡俊,聂在平,王军,邹光先,胡颉.三维电大目标散射求解的多层快速多极子方法[J].电波科学学报,2004,19(5):509-514. 被引量:75
  • 2张清河,肖柏勋,朱国强.基于支持向量机的介质圆柱体逆散射问题研究[J].电波科学学报,2007,22(2):234-238. 被引量:5
  • 3乌拉比FT 穆尔RK 冯健超 黄培康 汪一飞.微波遥感(第二卷)[M].北京:科学出版社,1987..
  • 4Sarabandi K,IEEE Trans Antennas Propagation,1997年,45卷,12期,1810页
  • 5Jin Y Q,Int J Remote Sensing,1997年,18卷,4期,971页
  • 6Huang X,Remote Sens Environ,1995年,53卷,3期,212页
  • 7Jin Y Q,Electromagnetic Scattering Modelling Quantitative Remote Sensing,1994年
  • 8Fung A K,Li Z Q,Chen K S. Backscattering from a Randomly Rough Dielectric Surface [J]. IEEE Trans. on Geoscience and Remote Sensing, 1992,30(2) : 356-369.
  • 9Sahebi M R,Bonn F,Gwyn Q H J. Estimation of the Moisture Content of Bare Soil from RADARSAT-1 SAR Using Simple Empirical Models[J]. International Journal of Remote Sensing, 2003,24(12) :2575-2582.
  • 10Oh Y,Sarabandi K, Ulaby F T. An Empirical Model and an Inversion Technique for Radar Scattering from Bare Soil Surface [J].IEEE Trans. on Geoscience and Remote Sensing, 1992,30(2) :370-382.

共引文献11

同被引文献20

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部