期刊文献+

利用目标类样本的遥感分类策略 被引量:2

Classification strategy for remote sensing data based on positive training samples
原文传递
导出
摘要 针对传统遥感分类要求训练集涵盖所有表观地物及亚类,对样本选取要求颇高,而实际应用中并不能保证所有类别都被标记的问题,该文提出基于目标类样本的遥感循环分类策略。该方法仅输入少量目标类样本,采用正样本、未标记样本的分类算法,实现在较少样本数量和种类的条件下,对目标类稳定、高效地识别。利用10组航空影像数据,建立与传统遥感分类对比实验,结果表明:相同实验条件下,基于目标类样本的遥感分类策略与传统遥感分类具有相当的分类效果;当样本集不完全时,该策略具有更稳定的高精度识别,总体精度与Kappa系数平均分别有5.2%和7.2%的提高。该方法能够有效解决不完全训练集分类问题。 For traditional classification methods,users need to provide training sample set with all the land types existing in the image.But actually,many applications are dealing with incomplete training samples that are lack of some types.In this paper,a classification strategy based on the positive training samples was proposed.The positive and unlabeled learning algorithm was used to realize high accuracy remote sensing classification using less samples on amounts and types.To verify the correctness and advantage of the new strategy,10 independent experiments with different study sites were used to build comparative analysis.When the training sample set contained all the land-types,the accuracy assessment of the new strategy had the same statistic sense as the traditional methods;and when there are some types missing in the training set,the performance was much better than the traditional method with an average increase of5.2%at overall accuracy and 7.2%at kappa coefficient.The new strategy has the better performance when dealing with incomplete training samples.
出处 《测绘科学》 CSCD 北大核心 2016年第2期133-139,共7页 Science of Surveying and Mapping
基金 国家科技支撑计划课题项目(2012BAB11B05)
关键词 正样本 不完全训练集 遥感分类 目标类 positive training samples incomplete training samples remote sensing classification target class
  • 相关文献

参考文献12

  • 1RICHARDS J A,JIA X.Remote sensing digital image analysis:an introduction[M].4th ed.Germany:Springer,1999.
  • 2FOODY G M,MATHUR A,SANCHEZ-HERNANDEZ C,et al.Training set size requirements for the classification of a specific class[J].Remote Sensing of Environment,2006,104(1):1-14.
  • 3GARG P,SUNDARARAJAN S.Active learning in partially supervised classification[C]//Proceedings of the 18th ACM Conference on Information and Knowledge Management.2009:1783-1786.
  • 4LIU Z,SHI W,LI D,et al.Partially supervised classification-based on weighted unlabeled samples support vector machine[C]//Proc.1st Int.Conf.Adv.Data Mining Appl.,2005:118-129.
  • 5MANTERO P,MOSER G,SERPICO S B.Partially supervised classification of remote sensing images through SVM-based probability density estimation[C]//IEEE Transactions on Geoscience and Remote Sensing,2005,43(3):559-570.
  • 6LI W,GUO Q,ELKAN C.Can we model the probability of presence of species without absence data?[J].Ecography,2011,4(1):1096-1105.
  • 7GUO Q,KELLY M,GRAHAM C H.Support vector machines for predicting distribution of Sudden Oak Death in California[J].Ecol.Model.,2005,182(1):75-90.
  • 8刘志刚,史文中,李德仁,秦前清.一种基于支撑向量机的遥感影像不完全监督分类新方法[J].遥感学报,2005,9(4):363-373. 被引量:17
  • 9ELKAN C,NOTO K.Learning classifiers from only positive and unlabeled data[C]//Proceedings of the14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD 2008),Las Vegas,Nevada,USA.2008.
  • 10LI W,GUO Q,ELKAN C.A positive and unlabeled learning algorithm for one-class classification of remote sensing data[C]//IEEE Transactions on Geoscience and Remote Sensing,2011,49(2):717-725.

二级参考文献56

共引文献50

同被引文献17

引证文献2

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部