期刊文献+

一种相似性保持的线性嵌入哈希方法 被引量:2

Linear embedding Hashing method in preserving similarity
下载PDF
导出
摘要 在图像检索技术中,针对高维特性海量的图像数据检索速度慢、数据存储容量大及图像和其哈希编码之间相关性差的缺点,将相关性预测函数引入到哈希算法中,提出了一种相似性保持的线性嵌入哈希方法.该方法利用相关性预测函数保持高维数据与其编码之间的邻近关系,使边界损失代价最小化,构建线性哈希映射矩阵,获得紧致的哈希编码,提高了图像与编码间的相关性,实现了高精度的图像检索.通过与现存经典的哈希算法相对比,实验结果验证了线性嵌入哈希方法在查全率和查准率上的有效性. In order to implement quick and effective search, save the storage space and improve the poor performance of affinity relationshaps between high dimensional data and its codes in image retrieval, a new linear embedding hashing is proposed by introducing the preserving similarity. First, the whole data set is clustered into several classes, and then the similarity predicted function is used to maintain affinity relationships between high dimensional data and its codes so as to establish the objective function. By minimizing the margin loss function, the optimal embedded matrix can be obtained. Compared with the existing classic hashing algorithm, experimental results show that the performance of the linear embedding hash algorithm is superior to the other binary encoding strategy on precision and recall.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2016年第1期94-98,共5页 Journal of Xidian University
基金 国家杰出青年科学基金资助项目(61125204) 国家自然科学基金重点资助项目(61432014) 国家自然科学基金资助项目(6147230) 国家自然科学基金青年基金资助项目(61100158)
关键词 相似最近邻搜索 哈希 相关性预测函数 查准率 查全率 approximate nearest neighbor search hashing similarity predicted function precision recall
  • 相关文献

参考文献14

  • 1INDYK P, MOTWANI R. Approximate Nearest Neighbors: Towards Removing The Curse Of Dimensionality[C]// Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing. New York: ACM, 1998: 604-613.
  • 2WEISS Y, TORRALBA A, FERGUS R. Spectral Hashing [C] //Proceedings of the Conference on Advances in Neural Information Processing Systems. New York: NIPS, 2009: 1753-1760.
  • 3DATAR M, IMMORLICA N, INDYK P, et al. Locality-sensitive Hashing Scheme Based on p-stable Distributions [C]//Proceedings of the Twentieth Annual Symposium On Computational Geometry. New York: ACM, 2004: 253- 262.
  • 4WANG X J, ZHANG L, JING F, et al. Annosearch: Image Auto-annotation by Search[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2006 : 1483-1490.
  • 5GONG Y, LAZEBNIK S. Iterative Quantization: a Procrustean Approach to Learning Binary Codes [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2011: 817- 824.
  • 6GE T, HE K, KE Q, et al. Optimized Product Quantization for Approximate Nearest Neighbor Search [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2013: 2946-2953.
  • 7HE K, WEN F, SUN J. K-means Hashing: an Affinity-preserving Quantization Method for Learning Binary Compact Codes [C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2013: 2938-2945.
  • 8HarringtonP.机器学习实战[M].北京:人民邮电出版社,2013.
  • 9伍忠东,高新波,谢维信.基于核方法的模糊聚类算法[J].西安电子科技大学学报,2004,31(4):533-537. 被引量:75
  • 10SHEN F, SHEN C, SHI Q, et al. Inductive Hashing on Manifolds [C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2013: 1562-1569.

二级参考文献12

  • 1Dave R N. Generalized Fuuzy C-shell Clustering and Detection of Circular and Elliptical Boundaries[J]. Pattern Recognition, 1992, 25(7): 639-641.
  • 2Krishnapuram R, Frigui H, Nasraui O. The Fuzzy C Quadric Shell Clustering Algorithm and the Detection of Second-degree[J]. Pattern Recognition Letters, 1993, 14(7): 545-552.
  • 3Girolami M. Mercer Kernel Based Clustering in Feature Space[J]. IEEE Trans on Neural Networks, 2002, 13(3): 780-784.
  • 4Burges C J C. Geometry and Invariance in Kernel Based Methods[A]. Advance in Kernel Methods-Support Vector Learning[C]. Cambridge: MIT Press, 1999. 89-116.
  • 5Scholkopf B, MIka S, Burges C, et al. Input Space Versus Feature Space in Kernel-based Methods[J]. IEEE Trans on Neural Networks, 1999, 10(5): 1000-1017.
  • 6Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981.
  • 7Bezdek J C. Convergence Theory for Fuzzy C-Means: Counterexamples and Repaires[J]. IEEE Trans on SMC, 1987, 17(4): 873-877.
  • 8Bezdek J C, Keller J M, Krishnapuram R, et al. Will the Real IRIS Data Please Stand Up?[J]. IEEE Trans on Fuzzy System, 1999, 7(3): 368-369.
  • 9Chernoff D F. The Use of Faces to Represent Points in k-dimensional Space Graphically[J]. Journal of American Statistic Association, 1999, 58(342): 361-368.
  • 10高新波,谢维信.模糊聚类理论发展及应用的研究进展[J].科学通报,1999,44(21):2241-2251. 被引量:100

共引文献80

同被引文献19

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部